Curr Nutr Rep. 2025 Jun 04. 14(1): 77
PURPOSE OF REVIEW: This review explores the role of Vitamin D3 and its derivatives as inhibitors of pathological metabolic modifications in neurodegenerative diseases. The manuscript investigates how Vitamin D3 impacts neuronal calcium regulation, antioxidative pathways, immunomodulation, and neuroprotection during detoxification, beyond its known functions in intestinal, bone, and kidney calcium and phosphorus absorption, as well as bone mineralization.
RECENT FINDINGS: Recent studies have highlighted the synthesis of the active metabolite 1,25(OH)2D3 (vitamin D) in glial cells via the hydroxylation process of CY-P24A1, an enzyme in the cytochrome P450 system in the brain. The effects of vitamin D occur through the vitamin D receptor (VDR), a nuclear steroid receptor, which has been identified in various brain regions, including the cerebellum, thalamus, hypothalamus, basal ganglia, hippocampus, olfactory system, temporal, and orbital regions. Neurodegeneration is primarily associated with oxidative stress, protein aggregation, neuroinflammation, mitochondrial dysfunction, apoptosis, and autophagy changes, all of which Vitamin D and VDR are believed to influence. Vitamin D and VDR are recognized as both environmental and genetic factors in the etiopathogenesis of neurodegenerative diseases such as Multiple Sclerosis (MS), Parkinson's Disease (PD), Alzheimer's Disease (AD), and Amyotrophic Lateral Sclerosis (ALS). A deficiency in Vitamin D is postulated to have detrimental effects on the brain and other diseases throughout various stages of life. This review consolidates findings from clinical and experimental studies, as well as past publications, focusing on the implications of Vitamin D deficiency in these neurodegenerative conditions. Current articles published in PubMed were extensively considered for this review.
Keywords: Alzheimer’s disease; Amyotrophic lateral sclerosis; Multiple sclerosis; Neurodegenerative diseases; Parkinson’s disease; Vitamin D