Cancer Genomics Proteomics. 2025 May-Jun;22(3):22(3): 363-381
Dysregulation of protein synthesis, folding, and secretion leads to endoplasmic reticulum (ER) stress, triggering the unfolded protein response (UPR). While the UPR is essential for cell survival under stress, its chronic activation in cancer cells supports tumorigenesis, metastasis, and chemoresistance by enabling cellular adaptation to hypoxia, nutrient deprivation, and oxidative stress. This review provides a comprehensive overview of the roles of key UPR mediators - binding immunoglobulin protein (BiP), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6) - in cancer progression and therapy resistance. Furthermore, it discusses strategies to target UPR pathways, including small molecule inhibitors, gene therapies, natural compounds, and combination therapies, while it evaluates their preclinical and clinical relevance. Finally, it explores how modulating UPR signaling can overcome therapeutic resistance, improve immunotherapy outcomes, and reshape the tumor microenvironment. This review emphasizes the promise of UPR-targeted approaches in enhancing the efficacy of current cancer treatments and achieving better patient outcomes.
Keywords: Unfolded protein response (UPR); cancer progression; chemoresistance; endoplasmic reticulum stress; review; targeted cancer therapy