bims-unfpre Biomed News
on Unfolded protein response
Issue of 2024‒11‒03
six papers selected by
Susan Logue, University of Manitoba



  1. Trends Cancer. 2024 Oct 29. pii: S2405-8033(24)00213-9. [Epub ahead of print]
      The tumor microenvironment (TME) represents a dynamic network of cancer cells, stromal cells, immune mediators, and extracellular matrix components, crucial for cancer progression. Stress conditions such as oncogene activation, nutrient deprivation, and hypoxia disrupt the endoplasmic reticulum (ER), activating the unfolded protein response (UPR), the main adaptive mechanism to restore ER function. The UPR regulates cancer progression by engaging cell-autonomous and cell-non-autonomous mechanisms, reprogramming the stroma and promoting immune evasion, angiogenesis, and invasion. This review explores the role of UPR beyond cancer cells, focusing on how ER stress signaling reshapes the TME, supporting tumor growth. The therapeutic potential of targeting the UPR is also discussed.
    Keywords:  angiogenesis; cancer; endoplasmic reticulum stress; tumor microenvironment; unfolded protein response
    DOI:  https://doi.org/10.1016/j.trecan.2024.09.011
  2. Cell Calcium. 2024 Oct 18. pii: S0143-4160(24)00119-2. [Epub ahead of print]124 102961
      Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca2+ ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca2+ binding, increases cytosolic Ca2+through the opening of ER Ca2+ channels, and activates store-operated Ca2+ entry (SOCE). Posttranslational modifications (PTMs) of the ER Ca2+ handling proteins through ER stress-dependent phosphorylation or oxidation control these mechanisms, as demonstrated in the case of the sarco/endoplasmic reticulum ATPase (SERCA), inositol 1,4,5 trisphosphate receptors (IP3Rs) or stromal interaction molecule 1 (STIM1). Their aim is to restore ER Ca2+ homeostasis but also to increase Ca2+ transfer from the ER to mitochondria during ER stress. This latter function boosts ER bioenergetics, but also triggers apoptosis if ER Ca2+ signaling persists. ER Ca2+ toolkit oxidative modifications upon ER stress can occur within the ER lumen or in the adjacent cytosol. Enzymes involved in this redox control include ER oxidoreductin 1 (ERO1) or the thioredoxin-family protein disulfide isomerases (PDI) and ERp57. A tight, but adaptive connection between ER Ca2+ content, ER stress and mitochondrial readouts allows for the proper functioning of many tissues, including skeletal muscle, the liver, and the pancreas, where ER stress either maintains or compromises their function, depending on its extent and context. Upon mutation of key regulators of ER Ca2+ signaling, diseases such as muscular defects (e.g., from mutated selenoprotein N, SEPN1/SELENON), or diabetes (e.g., from mutated PERK) are the result.
    Keywords:  Endoplasmic reticulum (ER); Mitochondria; Mutation; Rare Disease
    DOI:  https://doi.org/10.1016/j.ceca.2024.102961
  3. Nat Commun. 2024 Oct 28. 15(1): 9273
      Transfer RNA halves (tRHs) have various biological functions. However, the biogenesis of specific 5'-tRHs under certain conditions remains unknown. Here, we report that inositol-requiring enzyme 1α (IRE1α) cleaves the anticodon stem-loop region of tRNAGly(GCC) to produce 5'-tRHs (5'-tRH-GlyGCC) with highly selective target discrimination upon endoplasmic reticulum (ER) stress. Levels of 5'-tRH-GlyGCC positively affect cancer cell proliferation and modulate mRNA isoform biogenesis both in vitro and in vivo; these effects require co-expression of two nuclear ribonucleoproteins, HNRNPM and HNRNPH2, which we identify as binding proteins of 5'-tRH-GlyGCC. In addition, under ER stress in vivo, we observe simultaneous induction of IRE1α and 5'-tRH-GlyGCC expression in mouse organs and a distantly related organism, Cryptococcus neoformans. Thus, collectively, our findings indicate an evolutionarily conserved function for IRE1α-generated 5'-tRH-GlyGCC in cellular adaptation upon ER stress.
    DOI:  https://doi.org/10.1038/s41467-024-53624-4
  4. PLoS One. 2024 ;19(10): e0309749
      BACKGROUND: The transcriptomic profile of cellular senescence is strongly associated with distinct cell types, the specific stressors triggering senescence, and temporal progression through senescence stages. This implies the potential necessity of conducting separate investigations for each cell type and a stressor inducing senescence. To elucidate the molecular mechanism that drives endoplasmic reticulum (ER) stress-induced cellular senescence in MCF-7 breast cancer cells, with a particular emphasis on the ATF6α branch of the unfolded protein response. We conducted transcriptomic analysis on MCF-7 cells by ectopic expression of ATF6α.METHODS: Transcriptomic sequencing was conducted on MCF-7 cells at 6 and 9 hours post senescence induction through ATF6α ectopic expression. Comprehensive analyses encompassing enriched functional annotation, canonical pathway analysis, gene network analysis, upstream regulator analysis and gene set enrichment analysis were performed on Differentially Expressed Genes (DEGs) at 6 and 9 hours as well as time-related DEGs. Regulators and their targets identified from the upstream regulator analysis were validated through RNA interference, and their impact on cellular senescence was assessed by senescence-associated β-galactosidase staining.
    RESULTS: ATF6α ectopic expression resulted in the identification of 12 and 79 DEGs at 6 and 9 hours, respectively, employing criteria of a false discovery rate < 0.05 and a lower fold change (FC) cutoff |log2FC| > 1. Various analyses highlighted the involvement of the UPR and/or ER Stress Pathway. Upstream regulator analysis of 9 hour-DEGs identified six regulators and eleven target genes associated with processes related to cytostasis and 'cell viability and cell death of connective tissue cells.' Validation confirmed the significance of MAP2K1/2, GPAT4, and PDGF-BB among the regulators and DDIT3, PPP1R15A, and IL6 among the targets.
    CONCLUSION: Transcriptomic analyses and validation reveal the importance of the MAP2K1/2/GPAT4-DDIT3 pathway in driving cellular senescence following ATF6α ectopic expression in MCF-7 cells. This study contributes to our understanding of the initial molecular events underlying ER stress-induced cellular senescence in breast cancer cells, providing a foundation for exploring cell type- and stressor-specific responses in cellular senescence induction.
    DOI:  https://doi.org/10.1371/journal.pone.0309749
  5. Mol Cell. 2024 Oct 24. pii: S1097-2765(24)00826-8. [Epub ahead of print]
      Senescence is a state of indefinite cell-cycle arrest associated with aging, cancer, and age-related diseases. Here, we find that translational deregulation, together with a corresponding maladaptive integrated stress response (ISR), is a hallmark of senescence that desensitizes senescent cells to stress. We present evidence that senescent cells maintain high levels of eIF2α phosphorylation, typical of ISR activation, but translationally repress production of the stress response activating transcription factor 4 (ATF4) by ineffective bypass of the inhibitory upstream open reading frames (uORFs). Surprisingly, ATF4 translation remains inhibited even after acute proteotoxic and amino acid starvation stressors, resulting in a highly diminished stress response. We also find that stress augments the senescence-associated secretory phenotype with sustained remodeling of inflammatory factors expression that is suppressed by non-uORF carrying ATF4 mRNA expression. Our results thus show that senescent cells possess a unique response to stress, which entails an increase in their inflammatory profile.
    Keywords:  ATF4; ER stress; ISR; SASP; integrated stress response; nanopore direct RNA sequencing; proteomics; ribosome sequencing; senescence; senescence-associated secretory phenotype; translation
    DOI:  https://doi.org/10.1016/j.molcel.2024.10.003