bims-unfpre Biomed News
on Unfolded protein response
Issue of 2024–09–15
eight papers selected by
Susan Logue, University of Manitoba



  1. Cells. 2024 Sep 06. pii: 1498. [Epub ahead of print]13(17):
      ER-phagy is a specialized form of autophagy, defined by the lysosomal degradation of ER subdomains. ER-phagy has been implicated in relieving the ER from misfolded proteins during ER stress upon activation of the unfolded protein response (UPR). Here, we identified an essential role for the ER chaperone calnexin in regulating ER-phagy and the UPR in neurons. We showed that chemical induction of ER stress triggers ER-phagy in the somata and axons of primary cultured motoneurons. Under basal conditions, the depletion of calnexin leads to an enhanced ER-phagy in axons. However, upon ER stress induction, ER-phagy did not further increase in calnexin-deficient motoneurons. In addition to increased ER-phagy under basal conditions, we also detected an elevated proteasomal turnover of insoluble proteins, suggesting enhanced protein degradation by default. Surprisingly, we detected a diminished UPR in calnexin-deficient early cortical neurons under ER stress conditions. In summary, our data suggest a central role for calnexin in orchestrating both ER-phagy and the UPR to maintain protein homeostasis within the ER.
    Keywords:  ER stress; ER-phagy; UPR; calnexin; unfolded protein response
    DOI:  https://doi.org/10.3390/cells13171498
  2. Proc Natl Acad Sci U S A. 2024 Sep 17. 121(38): e2400781121
      During homeostasis, the endoplasmic reticulum (ER) maintains productive transmembrane and secretory protein folding that is vital for proper cellular function. The ER-resident HSP70 chaperone, binding immunoglobulin protein (BiP), plays a pivotal role in sensing ER stress to activate the unfolded protein response (UPR). BiP function is regulated by the bifunctional enzyme filamentation induced by cyclic-AMP domain protein (FicD) that mediates AMPylation and deAMPylation of BiP in response to changes in ER stress. AMPylated BiP acts as a molecular rheostat to regulate UPR signaling, yet little is known about the molecular consequences of FicD loss. In this study, we investigate the role of FicD in mouse embryonic fibroblast (MEF) response to pharmacologically and metabolically induced ER stress. We find differential BiP AMPylation signatures when comparing robust chemical ER stress inducers to physiological glucose starvation stress and recovery. Wildtype MEFs respond to pharmacological ER stress by down-regulating BiP AMPylation. Conversely, BiP AMPylation in wildtype MEFs increases upon metabolic stress induced by glucose starvation. Deletion of FicD results in widespread gene expression changes under baseline growth conditions. In addition, FicD null MEFs exhibit dampened UPR signaling, altered cell stress recovery response, and unconstrained protein secretion. Taken together, our findings indicate that FicD is important for tampering UPR signaling, stress recovery, and the maintenance of secretory protein homeostasis.
    Keywords:  AMPylation; BiP; ER stress; Fic enzymes posttranslational modifications; unfolded protein response
    DOI:  https://doi.org/10.1073/pnas.2400781121
  3. Int J Mol Sci. 2024 Aug 26. pii: 9227. [Epub ahead of print]25(17):
      Charcot-Marie-Tooth type 1B (CMT1B) is a peripheral neuropathy caused by mutations in the gene encoding myelin protein zero (MPZ), a key component of the myelin sheath in Schwann cells. Mutations in the MPZ gene can lead to protein misfolding, unfolded protein response (UPR), endoplasmic reticulum (ER) stress, or protein mistrafficking. Despite significant progress in understanding the disease mechanisms, there is currently no effective treatment for CMT1B, with therapeutic strategies primarily focused on supportive care. Gene therapy represents a promising therapeutic approach for treating CMT1B. To develop a treatment and better design preclinical studies, an in-depth understanding of the pathophysiological mechanisms and animal models is essential. In this review, we present a comprehensive overview of the disease mechanisms, preclinical models, and recent advancements in therapeutic research for CMT1B, while also addressing the existing challenges in the field. This review aims to deepen the understanding of CMT1B and to encourage further research towards the development of effective treatments for CMT1B patients.
    Keywords:  Charcot–Marie–Tooth type 1B; gene therapy; myelin protein zero; neuropathy; schwann cells
    DOI:  https://doi.org/10.3390/ijms25179227
  4. Cancers (Basel). 2024 Sep 05. pii: 3092. [Epub ahead of print]16(17):
      Pancreatic cancer is a refractory cancer with limited treatment options. Various cancer types are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Eugenol, the main component of clove oil, exhibits anticancer, anti-inflammatory, and antioxidant effects. However, no studies have reported that eugenol increases TRAIL sensitivity by upregulating death receptor (DR) expression. Here, we aimed to investigate eugenol as a potent TRAIL sensitizer. Increased apoptosis and inhibition of cell proliferation was observed in pancreatic cancer cells treated with eugenol and TRAIL compared with those treated with eugenol alone. Eugenol upregulated the expression of DR5, inhibited the FLICE-inhibitory protein (FLIP), an anti-apoptotic protein, and increased p53, a tumor suppressor protein. In addition, eugenol induced the generation of reactive oxygen species (ROS) and caused endoplasmic reticulum (ER) stress. C/EBP-homologous protein (CHOP) knockdown using siRNA decreased the expression of DR5 and reduced the combined effects of eugenol and TRAIL. These results demonstrate that eugenol enhances TRAIL-induced apoptosis by upregulating DR5 through the ROS-mediated ER stress-CHOP pathway, which enhances ER stress by inducing p53 and downregulating FLIP expression. This suggests that eugenol has the potential to treat pancreatic cancer by increasing cell sensitivity to TRAIL.
    Keywords:  ROS; TNF-related apoptosis-inducing ligand; death receptor 5; endoplasmic reticulum stress; eugenol; siRNA
    DOI:  https://doi.org/10.3390/cancers16173092
  5. Cell Host Microbe. 2024 Sep 02. pii: S1931-3128(24)00314-7. [Epub ahead of print]
      The cytokine tumor necrosis factor (TNF) plays important roles in limiting infection but is also linked to sepsis. The mechanisms underlying these paradoxical roles are unclear. Here, we show that TNF limits the antimicrobial activity of Paneth cells (PCs), causing bacterial translocation from the gut to various organs. This TNF-induced lethality does not occur in mice with a PC-specific deletion in the TNF receptor, P55. In PCs, TNF stimulates the IFN pathway and ablates the steady-state unfolded protein response (UPR), effects not observed in mice lacking P55 or IFNAR1. TNF triggers the transcriptional downregulation of IRE1 key genes Ern1 and Ern2, which are key mediators of the UPR. This UPR deficiency causes a significant reduction in antimicrobial peptide production and PC antimicrobial activity, causing bacterial translocation to organs and subsequent polymicrobial sepsis, organ failure, and death. This study highlights the roles of PCs in bacterial control and therapeutic targets for sepsis.
    Keywords:  Paneth cells; TNF; bacterial translocation; interferon; unfolded protein response
    DOI:  https://doi.org/10.1016/j.chom.2024.08.007
  6. Cell Death Dis. 2024 Sep 11. 15(9): 667
      Mitochondria are essential organelles that play critical roles in energy metabolism, apoptosis and various cellular processes. Accumulating evidence suggests that mitochondria are also involved in cancer development and progression. The mitochondrial unfolded protein response (UPRmt) is a complex cellular process that is activated when the protein-folding capacity of the mitochondria is overwhelmed. The core machinery of UPRmt includes upstream regulatory factors, mitochondrial chaperones and proteases. These components work together to eliminate misfolded proteins, increase protein-folding capacity, and restore mitochondrial function. Recent studies have shown that UPRmt is dysregulated in various cancers and contributes to tumor initiation, growth, metastasis, and therapeutic resistance. Considering the pivotal role of the UPRmt in oncogenesis, numerous compounds and synthetic drugs targeting UPRmt-related components induce cancer cell death and suppress tumor growth. In this review, we comprehensively summarize recent studies on the molecular mechanisms of UPRmt activation in C. elegans and mammals and elucidate the conceptual framework, functional aspects, and implications of the UPRmt for cancer therapy. In summary, we paint a developmental landscape of the UPRmt in different types of cancer and offer valuable insights for the development of novel cancer treatment strategies by targeting the UPRmt.
    DOI:  https://doi.org/10.1038/s41419-024-07049-y
  7. Cells. 2024 Aug 26. pii: 1431. [Epub ahead of print]13(17):
      TRIM44, a tripartite motif (TRIM) family member, is pivotal in linking the ubiquitin-proteasome system (UPS) to autophagy in multiple myeloma (MM). However, its prognostic impact and therapeutic potential remain underexplored. Here, we report that TRIM44 overexpression is associated with poor prognosis in a Multiple Myeloma Research Foundation (MMRF) cohort of 858 patients, persisting across primary and recurrent MM cases. TRIM44 expression notably increases in advanced MM stages, indicating its potential role in disease progression. Single-cell RNA sequencing across MM stages showed significant TRIM44 upregulation in smoldering MM (SMM) and MM compared to normal bone marrow, especially in patients with t(4;14) cytogenetic abnormalities. This analysis further identified high TRIM44 expression as predictive of lower responsiveness to proteasome inhibitor (PI) treatments, underscoring its critical function in the unfolded protein response (UPR) in TRIM44-high MM cells. Our findings also demonstrate that TRIM44 facilitates SQSTM1 oligomerization under oxidative stress, essential for its phosphorylation and subsequent autophagic degradation. This process supports the survival of PI-resistant MM cells by activating the NRF2 pathway, which is crucial for oxidative stress response and, potentially, other chemotherapy-induced stressors. Additionally, TRIM44 counters the TRIM21-mediated suppression of the antioxidant response, enhancing MM cell survival under oxidative stress. Collectively, our discoveries highlight TRIM44's significant role in MM progression and resistance to therapy, suggesting its potential value as a therapeutic target.
    Keywords:  autophagy; multiple myeloma; unfolded protein response
    DOI:  https://doi.org/10.3390/cells13171431
  8. Cells. 2024 Aug 27. pii: 1439. [Epub ahead of print]13(17):
      Microcystin-LR (MC-LR), a cyanobacterial toxin, is a potent carcinogen implicated in colorectal cancer (CRC) progression. However, its impact on the tumor microenvironment (TME) during CRC development remains poorly understood. This study investigates the interaction between tumor cells and macrophages mediated by MC-LR within the TME and its influence on CRC progression. CRC mice exposed to MC-LR demonstrated a significant transformation from adenoma to adenocarcinoma. The infiltration of macrophages increased, and the IRE1α/XBP1 pathway was activated in CRC cells after MC-LR exposure, influencing macrophage M2 polarization under co-culture conditions. Additionally, hexokinase 2 (HK2), a downstream target of the IRE1α/XBP1 pathway, was identified, regulating glycolysis and lactate production. The MC-LR-induced IRE1α/XBP1/HK2 axis enhanced lactate production in CRC cells, promoting M2 macrophage polarization. Furthermore, co-culturing MC-LR-exposed CRC cells with macrophages, along with the IRE1α/XBP1 pathway inhibitor 4μ8C and the hexokinase inhibitor 2-DG, suppressed M2 macrophage-induced CRC cell migration, clonogenicity, and M2 macrophage polarization. This study elucidates the mechanism by which MC-LR-mediated interactions through the IRE1α/XBP1 pathway promote CRC progression, highlighting potential therapeutic targets.
    Keywords:  IRE1α/XBP1 signaling pathway; colorectal cancer; macrophage; microcystin-LR; tumor microenvironment
    DOI:  https://doi.org/10.3390/cells13171439