bims-unfpre Biomed News
on Unfolded protein response
Issue of 2023‒08‒13
five papers selected by
Susan Logue
University of Manitoba


  1. Nat Plants. 2023 Aug 10.
      Excessive accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, which is an underlying cause of major crop losses and devastating human conditions. ER proteostasis surveillance is mediated by the conserved master regulator of the unfolded protein response (UPR), Inositol Requiring Enzyme 1 (IRE1), which determines cell fate by controlling pro-life and pro-death outcomes through as yet largely unknown mechanisms. Here we report that Arabidopsis IRE1 determines cell fate in ER stress by balancing the ubiquitin-proteasome system (UPS) and UPR through the plant-unique E3 ligase, PHOSPHATASE TYPE 2CA (PP2CA)-INTERACTING RING FINGER PROTEIN 1 (PIR1). Indeed, PIR1 loss leads to suppression of pro-death UPS and the lethal phenotype of an IRE1 loss-of-function mutant in unresolved ER stress in addition to activating pro-survival UPR. Specifically, in ER stress, PIR1 loss stabilizes ABI5, a basic leucine zipper (bZIP) transcription factor, that directly activates expression of the critical UPR regulator gene, bZIP60, triggering transcriptional cascades enhancing pro-survival UPR. Collectively, our results identify new cell fate effectors in plant ER stress by showing that IRE1's coordination of cell death and survival hinges on PIR1, a key pro-death component of the UPS, which controls ABI5, a pro-survival transcriptional activator of bZIP60.
    DOI:  https://doi.org/10.1038/s41477-023-01480-3
  2. Parasite Immunol. 2023 Aug 11. e13009
      Alteration in the physiological state of the endoplasmic reticulum (ER) leads to the specific response known as unfolded protein response (UPR) or ER stress response. The UPR is driven by three sensor proteins, namely: Inositol-Requiring Enzyme 1, Protein Kinase RNA-like ER kinase and Activating Transcription Factor 6 to restore ER homeostasis. Pathogenic infection can initiate UPR activation; some pathogens can subvert the UPR to promote their survival and replication. Many intracellular pathogens, including Leishmania, can interact and hijack ER for their survival and replication, triggering ER stress and subsequently ER stress response. This review aims to provide a comprehensive overview of the ER stress response in infections with the Leishmania species.
    Keywords:  Leishmania species; activating transcription factor 6; endoplasmic reticulum; inositol requiring enzyme 1; leishmaniasis; protein kinase RNA-like ER kinase; unfolded protein response
    DOI:  https://doi.org/10.1111/pim.13009
  3. Stem Cells Int. 2023 ;2023 4483776
      Background: Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial lung disease, and it carries a poor prognosis due to a lack of efficient diagnosis methods and treatments. Epithelial-mesenchymal transition (EMT) plays a key role in IPF pathogenesis. Endoplasmic reticulum (ER) stress contributes to fibrosis via EMT-mediated pathways. Mesenchymal stem cell (MSC) transplantation is a promising treatment strategy for pulmonary fibrosis and ameliorates lung fibrosis in animal models via paracrine effects. However, the specific mechanisms underlying the effect of transplanted MSCs are not known. We previously reported that MSCs attenuate endothelial injury by modulating ER stress and endothelial-to-mesenchymal transition. The present study investigated whether modulation of ER stress- and EMT-related pathways plays essential roles in MSC-mediated alleviation of IPF.Methods and Results: We constructed a A549 cell model of transforming growth factor-β1 (TGF-β1)-induced fibrosis. TGF-β1 was used to induce EMT in A549 cells, and MSC coculture decreased EMT, as indicated by increased E-cadherin levels and decreased vimentin levels. ER stress participated in TGF-β1-induced EMT in A549 cells, and MSCs inhibited the expression of XBP-1s, XBP-1u, and BiP, which was upregulated by TGF-β1. Inhibition of ER stress contributed to MSC-mediated amelioration of EMT in A549 cells, and modulation of the IRE1α-XBP1 branch of the ER stress pathway may have played an important role in this effect. MSC transplantation alleviated bleomycin (BLM)-induced pulmonary fibrosis in mice. MSC treatment decreased the expression of ER stress- and EMT-related genes and proteins, and the most obvious effect of MSC treatment was inhibition of the IRE1α/XBP1 pathway.
    Conclusions: The present study demonstrated that MSCs decrease EMT by modulating ER stress and that blockade of the IRE1α-XBP1 pathway may play a critical role in this effect. The current study provides novel insight for the application of MSCs for IPF treatment and elucidates the mechanism underlying the preventive effects of MSCs against pulmonary fibrosis.
    DOI:  https://doi.org/10.1155/2023/4483776
  4. Front Immunol. 2023 ;14 1197356
      Introduction: The unfolded protein response (UPR) has emerged as an important signaling pathway mediating anti-viral defenses to Respiratory Syncytial Virus (RSV) infection. Earlier we found that RSV replication predominantly activates the evolutionarily conserved Inositol Requiring Enzyme 1α (IRE1α)-X-Box Binding Protein 1 spliced (XBP1s) arm of the Unfolded Protein Response (UPR) producing inflammation, metabolic adaptation and cellular plasticity, yet the mechanisms how the UPR potentiates inflammation are not well understood.Methods: To understand this process better, we examined the genomic response integrating RNA-seq and Cleavage Under Targets and Release Using Nuclease (CUT&RUN) analyses. These data were integrated with an RNA-seq analysis conducted on RSV-infected small airway cells ± an IRE1α RNAse inhibitor.
    Results: We identified RSV induced expression changes in ~3.2K genes; of these, 279 required IRE1α and were enriched in IL-10/cytokine signaling pathways. From this data set, we identify those genes directly under XBP1s control by CUT&RUN. Although XBP1s binds to ~4.2 K high-confidence genomic binding sites, surprisingly only a small subset of IL10/cytokine signaling genes are directly bound. We further apply CUT&RUN to find that RSV infection enhances XBP1s loading on 786 genomic sites enriched in AP1/Fra-1, RELA and SP1 binding sites. These control a subset of cytokine regulatory factor genes including IFN response factor 1 (IRF1), CSF2, NFKB1A and DUSP10. Focusing on the downstream role of IRF1, selective knockdown (KD) and overexpression experiments demonstrate IRF1 induction controls type I and -III interferon (IFN) and IFN-stimulated gene (ISG) expression, demonstrating that ISG are indirectly regulated by XBP1 through IRF1 transactivation. Examining the mechanism of IRF1 activation, we observe that XBP1s directly binds a 5' enhancer sequence whose XBP1s loading is increased by RSV. The functional requirement for the enhancer is demonstrated by targeting a dCas9-KRAB silencer, reducing IRF1 activation. Chromatin immunoprecipitation shows that XBP1 is required, but not sufficient, for RSV-induced recruitment of activated phospho-Ser2 Pol II to the enhancer.
    Discussion: We conclude that XBP1s is a direct activator of a core subset of IFN and cytokine regulatory genes in response to RSV. Of these IRF1 is upstream of the type III IFN and ISG response. We find that RSV modulates the XBP1s binding complex on the IRF1 5' enhancer whose activation is required for IRF1 expression. These findings provide novel insight into how the IRE1α-XBP1s pathway potentiates airway mucosal anti-viral responses.
    Keywords:  Cleavage Under Targets and Release Using Nuclease (CUT&RUN); X-box binding protein 1 (XBP1); innate immunity; inositol requiring enzyme (IRE1); interferon regulatory factor 1
    DOI:  https://doi.org/10.3389/fimmu.2023.1197356
  5. Cells. 2023 Jul 26. pii: 1935. [Epub ahead of print]12(15):
      Multiple myeloma (MM) is an aggressive malignancy that shapes, during its progression, a pro-tumor microenvironment characterized by altered protein secretion and the gene expression of mesenchymal stem cells (MSCs). In turn, MSCs from MM patients can exert an high pro-tumor activity and play a strong immunosuppressive role. Here, we show, for the first time, greater cell mobility paralleled by the activation of FilaminA (FLNA) in MM-derived MSCs, when compared to healthy donor (HD)-derived MSCs. Moreover, we suggest the possible involvement of the IRE1a-FLNA axis in the control of the MSC migration process. In this way, IRE1a can be considered as a good target candidate for MM therapy, considering its pro-survival, pro-osteoclast and chemoresistance role in the MM microenvironment. Our results suggest that IRE1a downregulation could also interfere with the response of MSCs to MM stimuli, possibly preventing cell-cell adhesion-mediated drug resistance. In addition, further investigations harnessing IRE1a-FLNA interaction could improve the homing efficiency of MSC as cell product for advanced therapy applications.
    Keywords:  IRE1a; mesenchymal stem cells; migration; multiple myeloma
    DOI:  https://doi.org/10.3390/cells12151935