bims-unfpre Biomed News
on Unfolded protein response
Issue of 2023–01–01
five papers selected by
Susan Logue, University of Manitoba



  1. J Biol Chem. 2022 Dec 23. pii: S0021-9258(22)01279-0. [Epub ahead of print] 102836
      Gap junctional intercellular communication (GJIC) involving astrocytes is important for proper CNS homeostasis. As determined in our previous studies, trafficking of the predominant astrocyte GJ protein, Connexin43 (Cx43), is disrupted in response to infection with a neurotropic murine β-coronavirus (MHV-A59). However, how host factors are involved in Cx43 trafficking and the infection response is not clear. Here, we show that Cx43 retention due to MHV-A59 infection was associated with increased ER stress and reduced expression of chaperone protein ERp29. Treatment of MHV-A59-infected astrocytes with the chemical chaperone 4-sodium phenylbutyrate (4-PBA) increased ERp29 expression, rescued Cx43 transport to the cell surface, increased GJIC, and reduced ER stress. We obtained similar results using an astrocytoma cell line (DBT) upon MHV-A59 infection. Critically, DBT cells transfected to express exogenous ERp29 were resistant to MHV-A59 infection and showed increased Cx43-mediated GJIC. Treatment with Cx43 mimetic peptides inhibited GJIC and increased viral susceptibility, demonstrating a role for intercellular communication in reducing MHV-A59 infectivity. Taken together, these results support a therapeutically targetable ERp29-dependent mechanism where β-coronavirus infectivity is modulated by reducing ER stress and rescuing Cx43 trafficking and function.
    Keywords:  Connexin43; ER stress; ERp29; MHV-A59; astrocytes; gap junctional intercellular communication (GJIC); murine coronavirus (mCoV); β-coronavirus infection
    DOI:  https://doi.org/10.1016/j.jbc.2022.102836
  2. Drug Des Devel Ther. 2022 ;16 4385-4397
      The endoplasmic reticulum (ER) is responsible for structural transformation or folding of de novo proteins for transport to the Golgi. When the folding capacity of the ER is exceeded or excessive accumulation of misfolded proteins occurs, the ER enters a stressed condition (ER stress) and unfolded protein responses (UPR) are triggered in order to rescue cells from the stress. Recovery of ER proceeds toward either survival or cell apoptosis. ER stress is implicated in many pathologies, such as diabetes, cardiovascular diseases, inflammatory diseases, neurodegeneration, and lysosomal storage diseases. As a survival or adaptation mechanism, chaperone molecules are upregulated to manage ER stress. Chemical versions of chaperone have been developed in search of drug candidates for ER stress-related diseases. In this review, synthetic or semi-synthetic chemical chaperones are categorized according to potential therapeutic area and listed along with their chemical structure and activity. Although only a few chemical chaperones have been approved as pharmaceutical drugs, a dramatic increase in literatures over the recent decades indicates enormous amount of efforts paid by many researchers. The efforts warrant clearer understanding of ER stress and the related diseases and consequently will offer a promising drug discovery platform with chaperone activity.
    Keywords:  cardiovascular disease; chemical chaperone; diabetes; drug discovery; endoplasmic reticulum stress; lysosomal storage disease; neurodegeneration; unfolded protein response
    DOI:  https://doi.org/10.2147/DDDT.S393816
  3. Oncotarget. 2022 Dec 29. 13 1380-1396
      Melanoma is the deadliest form of skin cancer in the US. Although immunotherapeutic checkpoint inhibitors and small-molecule kinase inhibitors have dramatically increased the survival of patients with melanoma, new or optimized therapeutic approaches are still needed to improve outcomes. 15-deoxy-Δ12,14-prostamide J2 (15d-PMJ2) is an investigational small-molecule that induces ER stress-mediated apoptosis selectively in tumor cells. Additionally, 15d-PMJ2 reduces melanoma growth in vivo. To assess the chemotherapeutic potential of 15d-PMJ2, the current study sought to uncover molecular pathways by which 15d-PMJ2 exerts its antitumor activity. B16F10 melanoma and JWF2 squamous cell carcinoma cell lines were cultured in the presence of pharmacological agents that prevent ER or oxidative stress as well as Ca2+ channel blockers to identify mechanisms of 15d-PMJ2 cell death. Our data demonstrated the ER stress protein, PERK, was required for 15d-PMJ2-induced death. PERK activation triggered the release of ER-resident Ca2+ through an IP3R sensitive pathway. Increased calcium mobilization led to mitochondrial Ca2+ overload followed by mitochondrial permeability transition pore (mPTP) opening and the deterioration of mitochondrial respiration. Finally, we show the electrophilic double bond located within the cyclopentenone ring of 15d-PMJ2 was required for its activity. The present study identifies PERK/IP3R/mPTP signaling as a mechanism of 15d-PMJ2 antitumor activity.
    Keywords:  calcium; cancer; endoplasmic reticulum stress; mitochondrial respiration; prostamide
    DOI:  https://doi.org/10.18632/oncotarget.28334
  4. BMC Cancer. 2022 Dec 30. 22(1): 1369
       BACKGROUND: Attenuated Oxaliplatin efficacy is a challenge in treating colorectal cancer (CRC) patients, contributory to the failure in chemotherapy and the risks in relapse and metastasis. However, the mechanism of Oxaliplatin de-efficacy during CRC treatment has not been completely elucidated.
    METHODS: Microarray screening, western blot and qPCR on clinic CRC samples were conducted to select the target gene ABCC10 transporter. The Cancer Genome Atlas data was analyzed to figure out the correlation between the clinical manifestation and ABCC10 expression. ABCC10 knock-down in CRC cells was conducted to identify its role in the Oxaliplatin resistance. Cell counting kit-8 assay was conducted to identify the CRC cell viability and Oxaliplatin IC50. Flow cytometry was conducted to detect the cell apoptosis exposed to Oxaliplatin. The intracellular Oxaliplatin accumulation was measured by ultra-high performance liquid chromatography coupled to tandem mass spectrometry.
    RESULTS: CRC patients with higher ABCC10 were prone to relapse and metastasis. Differential ABCC10 expression in multiple CRC cell lines revealed a strong positive correlation between ABCC10 expression level and decreased Oxaliplatin response. In ABCC10 knock-down CRC cells the Oxaliplatin sensitivity was evidently elevated due to an increase of intracellular Oxaliplatin accumulation resulted from the diminished drug efflux. To explore a strategy to block ABCC10 in CRC cells, we paid a special interest in the endoplasmic reticulum stress (ERS) / unfolded protein response (UPR) that plays a dual role in tumor development. We found that neither the inhibition of ERS nor the induction of mild ERS had anti-CRC effect. However, the CRC cell viability was profoundly decreased and the pro-apoptotic factor CHOP and apoptosis were increased by the induction of intense ERS. Significantly, the Oxaliplatin sensitivity of CRC cells was enhanced in response to the intense ERS, which was blocked by inhibiting IRE1α branch of UPR. Finally, we figured out that the intense ERS down-regulated ABCC10 expression via regulated IRE1-dependent decay activity.
    CONCLUSION: Oxaliplatin was a substrate of ABCC10 efflux transporter. The intense ERS/IRE1α enhanced Oxaliplatin efficacy through down-regulating ABCC10 in addition to inducing CHOP. We suggested that introduction of intense ERS/UPR could be a promising strategy to restore chemo-sensitivity when used in combination with Oxaliplatin or other chemotherapeutic drugs pumped out by ABCC10.
    Keywords:  ABCC10; Colorectal cancer; Endoplasmic reticulum stress; IRE1α; Oxaliplatin; Unfolded protein response
    DOI:  https://doi.org/10.1186/s12885-022-10415-8
  5. Mol Ther. 2022 Dec 24. pii: S1525-0016(22)00718-3. [Epub ahead of print]
      Mesenchymal stem cells (MSCs) are ubiquitous multipotent cells that exhibit significant therapeutic potentials in a variety of disorders. Nevertheless, their clinical efficacy is limited owing to poor survival, low rate of engraftment, and impaired potency upon transplantation. Spheroidal three-dimensional (3D) culture of MSCs (MSC3D) has been proved to better preserve their in vivo functional properties. However, the molecular mechanisms underlying the improvement in MSC function by spheroid formation are not clearly understood. NLRP3 inflammasomes, a key component of the innate immune system, have recently been shown to play a role in cell fate decision of MSCs. The present study examined the role of NLRP3 inflammasomes in the survival and potency of MSC spheroids. We found that MSC3D led to decreased activation of NLRP3 inflammasomes through alleviation of ER stress in an autophagy-dependent manner. Importantly, downregulation of NLRP3 inflammasomes signaling critically contributes to the enhanced survival rate in MSC3D through modulation of pyroptosis and apoptosis. The critical role of NLRP3 inflammasomes suppression in the enhanced therapeutic efficacy of MSC spheroids was further confirmed in an in vivo mouse model of DSS-induced colitis. These findings suggest that 3D culture confers survival and functional advantages to MSCs by suppressing NLRP3 inflammasomes activation.
    DOI:  https://doi.org/10.1016/j.ymthe.2022.12.014