bims-unfpre Biomed News
on Unfolded protein response
Issue of 2022–10–09
sixteen papers selected by
Susan Logue, University of Manitoba



  1. Sci Adv. 2022 Oct 07. 8(40): eabo3932
      Pancreatic islet beta cells are essential for maintaining glucose homeostasis. To understand the impact of aging on beta cells, we performed meta-analysis of single-cell RNA sequencing datasets, transcription factor (TF) regulon analysis, high-resolution confocal microscopy, and measured insulin secretion from nondiabetic donors spanning most of the human life span. This revealed the range of molecular and functional changes that occur during beta cell aging, including the transcriptional deregulation that associates with cellular immaturity and reorganization of beta cell TF networks, increased gene transcription rates, and reduced glucose-stimulated insulin release. These alterations associate with activation of endoplasmic reticulum (ER) stress and autophagy pathways. We propose that a chronic state of ER stress undermines old beta cell structure function to increase the risk of beta cell failure and type 2 diabetes onset as humans age.
    DOI:  https://doi.org/10.1126/sciadv.abo3932
  2. Biochim Biophys Acta Rev Cancer. 2022 Oct 01. pii: S0304-419X(22)00139-1. [Epub ahead of print] 188814
      Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer. Despite therapeutic advances, long term survival in patients diagnosed with advanced disease is low. Efforts to understand the mechanisms promoting disease progression will likely produce novel therapeutic targets. The unfolded protein response (UPR) is activated when unfolded protein accumulates in the endoplasmic reticulum (ER) upon cellular stress. Constitutive UPR activation is a characteristic of many malignancies. We discuss the accumulating evidence that describes a role for the UPR in ccRCC. Studies focused on UPR signalling may provide compelling avenues for therapeutic intervention in the future.
    Keywords:  Clear cell renal cell carcinoma (ccRCC); Tumourigenesis; Unfolded protein response (UPR)
    DOI:  https://doi.org/10.1016/j.bbcan.2022.188814
  3. Front Genet. 2022 ;13 965100
      Background: Abnormal activation of endoplasmic reticulum (ER) stress sensors and their downstream signalling pathways is a key regulator of tumour growth, tumour metastasis and the response to chemotherapy, targeted therapy and immunotherapy. However, the study of ER stress on the immune microenvironment of bladder urothelial carcinoma (BLCA) is still insufficient. Methods: Firstly, 23 ER stress genes were selected to analyse their expression differences and prognostic value in BLCA based on the existing BLCA genome atlas data. According to the expression level of ER stress-related genes in BLCA, two independent clusters were identified using consensus cluster analysis. Subsequently, the correlation between these two clusters in terms of the immune microenvironment and their prognostic value was analysed. Finally, we analysed the prognostic value of the key ER stress gene HSP90B1 in BLCA and its corresponding mechanism that affects the immune microenvironment. Results: Consensus clustering showed a worse prognosis and higher expression of immunoassay site-related genes (HAVCR2, PDCD1, CTLA4, CD274, LAG3, TIGIT and PDCD1LG2) in cluster 1 compared with cluster 2. Additionally, both TIMER and CIBERSORT algorithms showed that the expression of immune infiltrating cells in cluster 1 was significantly higher than that in cluster 2. Subsequently, HSP90B1 was identified as a key ER stress gene in BLCA, and its high expression indicated poor prognosis and was closely related to PD1. We also analysed the correlation between HSP90B1 expression and immune-infiltrating cell related biomarkers, which showed positive results. Finally, we verified the prognostic value of HSP90B1 in BLCA using an immunohistochemical assay in a tissue microarray of 100 patients with BLCA, validating the potential of HSP90B1 as a prognostic biomarker in patients with BLCA. Conclusion: Our work reveals that ER stress genes play a crucial role in the BLCA immunological milieu, and HSP90B1 is a potential prognostic biomarker and therapeutic target for cancer immunotherapy.
    Keywords:  BLCA; ER stress; HSP90B1; immune infiltration; therapeutic target
    DOI:  https://doi.org/10.3389/fgene.2022.965100
  4. Front Cardiovasc Med. 2022 ;9 988266
      Atherosclerosis (AS) is a common cardiovascular disease with complex pathogenesis, in which multiple pathways and their interweaving regulatory mechanism remain unclear. The primary transcription factor NF-κB plays a critical role in AS via modulating the expression of a series of inflammatory mediators under various stimuli such as cytokines, microbial antigens, and intracellular stresses. Endoplasmic reticulum (ER) stress, caused by the disrupted synthesis and secretion of protein, links inflammation, metabolic signals, and other cellular processes via the unfolded protein response (UPR). Both NF-κB and ER stress share the intersection regarding their molecular regulation and function and are regarded as critical individual contributors to AS. In this review, we summarize the multiple interactions between NF-κB and ER stress activation, including the UPR, NLRP3 inflammasome, and reactive oxygen species (ROS) generation, which have been ignored in the pathogenesis of AS. Given the multiple links between NF-κB and ER stress, we speculate that the integrated network contributes to the understanding of molecular mechanisms of AS. This review aims to provide an insight into these interactions and their underlying roles in the progression of AS, highlighting potential pharmacological targets against the atherosclerotic inflammatory process.
    Keywords:  NF-κB; NLRP3 inflammasome; atherosclerosis; endoplasmic reticulum stress; reactive oxygen species; unfolded protein response
    DOI:  https://doi.org/10.3389/fcvm.2022.988266
  5. Mol Cell Proteomics. 2022 Sep 28. pii: S1535-9476(22)00227-4. [Epub ahead of print] 100419
      Understanding how connective tissue cells respond to mechanical stimulation is important to human health and disease processes in musculoskeletal diseases. Injury to articular cartilage is a key risk factor in predisposition to tissue damage and degenerative osteoarthritis. Recently, we have discovered that mechanical injury to connective tissues including murine and porcine articular cartilage causes a significant increase in Lysine 63- polyubiquitination. Here we identified the ubiquitin signature that is unique to injured articular cartilage tissue post mechanical injury (the "mechano-ubiquitinome"). A total of 463 ubiquitinated peptides were identified, with an enrichment of ubiquitinated peptides of proteins involved in protein processing in the endoplasmic reticulum (ER), also known as the ER-associated degradation (ERAD) response, including YOD1, BRCC3, ATXN3 and USP5 as well as the ER stress regulators, RAD23B, VCP/p97 and Ubiquilin 1. Enrichment of these proteins suggested an injury-induced ER stress response and, for instance, ER stress markers DDIT3/CHOP and BIP/GRP78 were upregulated following cartilage injury on the protein and gene expression levels. Similar ER stress induction was also observed in response to tail fin injury in zebrafish larvae, suggesting a generic response to tissue injury. Furthermore, a rapid increase in global DUB activity following injury and significant activity in human osteoarthritic cartilage was observed using DUB specific activity probes. Combined, these results implicate the involvement of ubiquitination events and activation of a set of DUBs and ER stress regulators in cellular responses to cartilage tissue injury and in osteoarthritic cartilage tissues. This link through the ERAD pathway makes this protein set attractive for further investigation in in vivo models of tissue injury and for targeting in osteoarthritis and related musculoskeletal diseases.
    DOI:  https://doi.org/10.1016/j.mcpro.2022.100419
  6. J Virol. 2022 Oct 05. e0137522
      Peste des petits ruminants virus (PPRV) infection leads to autophagy, and the molecular mechanisms behind this phenomenon are unclear. Here, we demonstrate that PPRV infection results in morphological changes of the endoplasmic reticulum (ER) and activation of activating transcription factor 6 (ATF6) of the ER stress unfolded protein response (UPR). Knockdown of ATF6 blocked the autophagy process, suggesting ATF6 is necessary for PPRV-mediated autophagy induction. Further study showed that PPRV infection upregulates expression of the ER-anchored adaptor protein stimulator of interferon genes (STING), which is well-known for its pivotal roles in restricting DNA viruses. Knockdown of STING suppressed ATF6 activation and autophagy induction, implying that STING functions upstream of ATF6 to induce autophagy. Moreover, the STING-mediated autophagy response originated from the cellular pattern recognition receptor melanoma differentiation-associated gene 5 (MDA5). The absence of MDA5 abolished the upregulation of STING and the activation of autophagy. The deficiency of autophagy-related genes (ATG) repressed the autophagy process and PPRV replication, while it had no effect on MDA5 or STING expression. Overall, our work revealed that MDA5 works upstream of STING to activate ATF6 to induce autophagy. IMPORTANCEPPRV infection induces cellular autophagy; however, the intracellular responses and signaling mechanisms that occur upon PPRV infection are obscure, and whether innate immune responses are linked with autophagy to regulate viral replication is largely unknown. Here, we uncovered that the innate immune sensor MDA5 initiated the signaling cascade by upregulating STING, which is best known for its role in anti-DNA virus infection by inducing interferon expression. We first provide evidence that STING regulates PPRV replication by activating the ATF6 pathway of unfolded protein responses (UPRs) to induce autophagy. Our results revealed that in addition to mediating responses to foreign DNA, STING can cross talk with MDA5 to regulate the cellular stress response and autophagy induced by RNA viruses; thus, STING works as an adaptor protein for cellular stress responses and innate immune responses. Modulation of STING represents a promising approach to control both DNA and RNA viruses.
    Keywords:  ATF6; MDA5; PPRV; RNA virus; STING; UPR; autophagy
    DOI:  https://doi.org/10.1128/jvi.01375-22
  7. Proc Natl Acad Sci U S A. 2022 Oct 11. 119(41): e2203480119
      Fatty acids are an important source of energy and a key component of phospholipids in membranes and organelles. Saturated fatty acids (SFAs) are converted into unsaturated fatty acids (UFAs) by stearoyl Co-A desaturase (SCD), an enzyme active in cancer. Here, we studied how the dynamics between SFAs and UFAs regulated by SCD impacts ovarian cancer cell survival and tumor progression. SCD depletion or inhibition caused lower levels of UFAs vs. SFAs and altered fatty acyl chain plasticity, as demonstrated by lipidomics and stimulated Raman scattering (SRS) microscopy. Further, increased levels of SFAs resulting from SCD knockdown triggered endoplasmic reticulum (ER) stress response with brisk activation of IRE1α/XBP1 and PERK/eIF2α/ATF4 axes. Disorganized ER membrane was visualized by electron microscopy and SRS imaging in ovarian cancer cells in which SCD was knocked down. The induction of long-term mild ER stress or short-time severe ER stress by the increased levels of SFAs and loss of UFAs led to cell death. However, ER stress and apoptosis could be readily rescued by supplementation with UFAs and reequilibration of SFA/UFA levels. The effects of SCD knockdown or inhibition observed in vitro translated into suppression of intraperitoneal tumor growth in ovarian cancer xenograft models. Furthermore, a combined intervention using an SCD inhibitor and an SFA-enriched diet initiated ER stress in tumors growing in vivo and potently blocked their dissemination. In all, our data support SCD as a key regulator of the cancer cell fate under metabolic stress and point to treatment strategies targeting the lipid balance.
    Keywords:  ER stress; SRS imaging; fatty acids; lipid metabolism; ovarian cancer
    DOI:  https://doi.org/10.1073/pnas.2203480119
  8. Front Cell Dev Biol. 2022 ;10 974083
      The mitochondrial unfolded protein response (UPRmt) is a molecular mechanism that maintains mitochondrial proteostasis under stress and is closely related to various metabolic diseases, such as type 2 diabetes (T2D). Similarly, the unfolded protein response of the endoplasmic reticulum (UPRER) is responsible for maintaining proteomic stability in the endoplasmic reticulum (ER). Since the mitochondria and endoplasmic reticulum are the primary centers of energy metabolism and protein synthesis in cells, respectively, a synergistic mechanism must exist between UPRmt and UPRER to cooperatively resist stresses such as hyperglycemia in T2D. Increasing evidence suggests that the protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) signaling pathway is likely an important node for coordinating UPRmt and UPRER. The PERK pathway is activated in both UPRmt and UPRER, and its downstream molecules perform important functions. In this review, we discuss the mechanisms of UPRmt, UPRER and their crosstalk in T2D.
    Keywords:  PERK (PKR-like endoplasmic reticulum kinase); T2D; UPR; UPRmt; mitochondia; unfolded protein response
    DOI:  https://doi.org/10.3389/fcell.2022.974083
  9. Front Immunol. 2022 ;13 995974
       Background: Sepsis-induced apoptosis of immune cells leads to widespread depletion of key immune effector cells. Endoplasmic reticulum (ER) stress has been implicated in the apoptotic pathway, although little is known regarding its role in sepsis-related immune cell apoptosis. The aim of this study was to develop an ER stress-related prognostic and diagnostic signature for sepsis through bioinformatics and machine learning algorithms on the basis of the differentially expressed genes (DEGs) between healthy controls and sepsis patients.
    Methods: The transcriptomic datasets that include gene expression profiles of sepsis patients and healthy controls were downloaded from the GEO database. The immune-related endoplasmic reticulum stress hub genes associated with sepsis patients were identified using the new comprehensive machine learning algorithm and bioinformatics analysis which includes functional enrichment analyses, consensus clustering, weighted gene coexpression network analysis (WGCNA), and protein-protein interaction (PPI) network construction. Next, the diagnostic model was established by logistic regression and the molecular subtypes of sepsis were obtained based on the significant DEGs. Finally, the potential diagnostic markers of sepsis were screened among the significant DEGs, and validated in multiple datasets.
    Results: Significant differences in the type and abundance of infiltrating immune cell populations were observed between the healthy control and sepsis patients. The immune-related ER stress genes achieved strong stability and high accuracy in predicting sepsis patients. 10 genes were screened as potential diagnostic markers for sepsis among the significant DEGs, and were further validated in multiple datasets. In addition, higher expression levels of SCAMP5 mRNA and protein were observed in PBMCs isolated from sepsis patients than healthy donors (n = 5).
    Conclusions: We established a stable and accurate signature to evaluate the diagnosis of sepsis based on the machine learning algorithms and bioinformatics. SCAMP5 was preliminarily identified as a diagnostic marker of sepsis that may affect its progression by regulating ER stress.
    Keywords:  SCAMP5; endoplasmic reticulum stress; immunity; machine learning; sepsis
    DOI:  https://doi.org/10.3389/fimmu.2022.995974
  10. Luminescence. 2022 Oct 06.
      Carboxylesterase (CEs), mainly localized in endoplasmic reticulum (ER), are responsible for hydrolyzing compounds containing various ester bonds. They have closely associated with drug metabolism and cellular homeostasis. Although some CE fluorescent probes have been developed, there are still a lack of probes that could target to ER. Here, we developed a novel fluorescent probe CR with specific ER anchor for monitoring CEs. In CR, p-toluenesulfonamide was chosen as precise ER targeting. Simple acetyl moiety was employed as CE response site and fluorescent modulation unit. During the spectral tests, CR displayed fast response speed (within 10s) towards CEs. Besides, it showed high sensitivity (LOD=5.1x10-3 U/mL) and high selectivity with CEs. In biological imaging, probe CR could specially locate into ER in HepG2 cells. After cells treated with orilistat, CR has achieved in monitoring the changes of CEs. Importantly, CR also has ability of tracing the fluctuations of CEs in tunicamycin induced an ER stress model. Therefore, probe CR could be a powerful molecular tool for further investigating the functions of CEs in ER.
    Keywords:  Carboxylesterase fluorescent probe; Cellular imaging; ER targeting; fast response
    DOI:  https://doi.org/10.1002/bio.4392
  11. Cell Death Discov. 2022 Oct 04. 8(1): 407
      Leiomyosarcoma (LMS) is aggressive cancer with few therapeutic options. LMS cells are more sensitive to proteotoxic stress compared to normal smooth muscle cells. We used small compound 2c to induce proteotoxic stress and compare the transcriptomic adaptations of immortalized human uterine smooth muscle cells (HUtSMC) and LMS cells SK-UT-1. We found that the expression of the heat shock proteins (HSPs) gene family is upregulated with higher efficiency in normal cells. In contrast, the upregulation of BH3-only proteins is higher in LMS cells. HSF1, the master regulator of HSP transcription, is sequestered into transcriptionally incompetent nuclear foci only in LMS cells, which explains the lower HSP upregulation. We also found that several compounds can enhance the cell death response to proteotoxic stress. Specifically, when low doses were used, an inhibitor of salt-inducible kinases (SIKs) and the inhibitor of IRE1α, a key element of the unfolded protein response (UPR), support proteotoxic-induced cell death with strength in LMS cells and without effects on the survival of normal cells. Overall, our data provide an explanation for the higher susceptibility of LMS cells to proteotoxic stress and suggest a potential option for co-treatment strategies.
    DOI:  https://doi.org/10.1038/s41420-022-01202-2
  12. Cell Death Dis. 2022 Oct 06. 13(10): 851
      Protein disulfide isomerase (PDI) is an endoplasmic reticulum (ER) enzyme that mediates the formation of disulfide bonds, and is also a therapeutic target for cancer treatment. Our previous studies found that PDI mediates apoptotic signaling by inducing mitochondrial dysfunction. Considering that mitochondrial dysfunction is a major contributor to autophagy, how PDI regulates autophagy remains unclear. Here, we provide evidence that high expression of PDI in colorectal cancer tumors significantly increases the risk of metastasis and poor prognosis of cancer patients. PDI inhibits radio/chemo-induced cell death by regulating autophagy signaling. Mechanistically, the combination of PDI and GRP78 was enhanced after ER stress, which inhibits the degradation of AKT by GRP78, and eventually activates the mTOR pathway to inhibit autophagy initiation. In parallel, PDI can directly interact with the mitophagy receptor PHB2 in mitochondrial, then competitively blocks the binding of LC3II and PHB2 and inhibits the mitophagy signaling. Collectively, our results identify that PDI can reduce radio/chemo-sensitivity by regulating autophagy, which could be served as a potential target for radio/chemo-therapy.
    DOI:  https://doi.org/10.1038/s41419-022-05302-w
  13. Oxid Med Cell Longev. 2022 ;2022 6430342
      Mitochondrial protein homeostasis in cardiomyocyte injury determines not only the normal operation of mitochondrial function but also the fate of mitochondria in cardiomyocytes. Studies of mitochondrial protein homeostasis have become an integral part of cardiovascular disease research. Modulation of the mitochondrial unfolded protein response (UPRmt), a protective factor for cardiomyocyte mitochondria, may in the future become an important treatment strategy for myocardial protection in cardiovascular disease. However, because of insufficient understanding of the UPRmt and inadequate elucidation of relevant mechanisms, few therapeutic drugs targeting the UPRmt have been developed. The UPRmt maintains a series of chaperone proteins and proteases and is activated when misfolded proteins accumulate in the mitochondria. Mitochondrial injury leads to metabolic dysfunction in cardiomyocytes. This paper reviews the relationship of the UPRmt and mitochondrial quality monitoring with cardiomyocyte protection. This review mainly introduces the regulatory mechanisms of the UPRmt elucidated in recent years and the relationship between the UPRmt and mitophagy, mitochondrial fusion/fission, mitochondrial biosynthesis, and mitochondrial energy metabolism homeostasis in order to generate new ideas for the study of the mitochondrial protein homeostasis mechanisms as well as to provide a reference for the targeted drug treatment of imbalances in mitochondrial protein homeostasis following cardiomyocyte injury.
    DOI:  https://doi.org/10.1155/2022/6430342
  14. Cell Death Discov. 2022 Oct 04. 8(1): 406
      Perturbation of proteostasis triggers the adaptive responses that contribute to the homeostatic pro-survival response, whereas disruption of proteostasis can ultimately lead to cell death. Brain-specific oxysterol-i.e., 24(S)-hydroxycholesterol (24S-OHC)-has been shown to cause cytotoxicity when esterified by acyl-CoA:cholesterol acyltransferase 1 (ACAT1) in the endoplasmic reticulum (ER). Here, we show that the accumulation of 24S-OHC esters caused phosphorylation of eukaryotic translation initiator factor 2α (eIF2α), dissociation of polysomes, and formation of stress granules (SG), resulting in robust downregulation of global protein de novo synthesis in human neuroblastoma SH-SY5Y cells. We also found that integrated stress response (ISR) activation through PERK and GCN2 activation induced by 24S-OHC treatment caused eIF2α phosphorylation. 24S-OHC-inducible SG formation and cell death were suppressed by inhibition of ISR. These results show that ACAT1-mediated 24S-OHC esterification induced ISR and formation of SG, which play crucial roles in 24S-OHC-inducible protein synthesis inhibition and unconventional cell death.
    DOI:  https://doi.org/10.1038/s41420-022-01197-w
  15. JHEP Rep. 2022 Nov;4(11): 100555
       Background & Aims: XBP1 modulates the macrophage proinflammatory response, but its function in macrophage stimulator of interferon genes (STING) activation and liver fibrosis is unknown. X-box binding protein 1 (XBP1) has been shown to promote macrophage nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) activation in steatohepatitis. Herein, we aimed to explore the underlying mechanism of XBP1 in the regulation of STING signalling and the subsequent NLRP3 activation during liver fibrosis.
    Methods: XBP1 expression was measured in the human fibrotic liver tissue samples. Liver fibrosis was induced in myeloid-specific Xbp1-, STING-, and Nlrp3-deficient mice by carbon tetrachloride injection, bile duct ligation, or a methionine/choline-deficient diet.
    Results: Although increased XBP1 expression was observed in the fibrotic liver macrophages of mice and clinical patients, myeloid-specific Xbp1 deficiency or pharmacological inhibition of XBP1 protected the liver against fibrosis. Furthermore, it inhibited macrophage NLPR3 activation in a STING/IRF3-dependent manner. Oxidative mitochondrial injury facilitated cytosolic leakage of macrophage self-mtDNA and cGAS/STING/NLRP3 signalling activation to promote liver fibrosis. Mechanistically, RNA sequencing analysis indicated a decreased mtDNA expression and an increased BCL2/adenovirus E1B interacting protein 3 (BNIP3)-mediated mitophagy activation in Xbp1-deficient macrophages. Chromatin immunoprecipitation (ChIP) assays further suggested that spliced XBP1 bound directly to the Bnip3 promoter and inhibited the transcription of Bnip3 in macrophages. Xbp1 deficiency decreased the mtDNA cytosolic release and STING/NLRP3 activation by promoting BNIP3-mediated mitophagy activation in macrophages, which was abrogated by Bnip3 knockdown. Moreover, macrophage XBP1/STING signalling contributed to the activation of hepatic stellate cells.
    Conclusions: Our findings demonstrate that XBP1 controls macrophage cGAS/STING/NLRP3 activation by regulating macrophage self-mtDNA cytosolic leakage via BNIP3-mediated mitophagy modulation, thus providing a novel target against liver fibrosis.
    Lay summary: Liver fibrosis is a typical progressive process of chronic liver disease, driven by inflammatory and immune responses, and is characterised by an excess of extracellular matrix in the liver. Currently, there is no effective therapeutic strategy for the treatment of liver fibrosis, resulting in high mortality worldwide. In this study, we found that myeloid-specific Xbp1 deficiency protected the liver against fibrosis in mice, while XBP1 inhibition ameliorated liver fibrosis in mice. This study concluded that targeting XBP1 signalling in macrophages may provide a novel strategy for protecting the liver against fibrosis.
    Keywords:  Acta2/α-SMA, actin, alpha 2, smooth muscle, aorta; BDL, bile duct ligation; BMDMs, bone marrow-derived macrophages; BNIP3; BNIP3, BCL2/adenovirus E1B interacting protein 3; CCl4, carbon tetrachloride; CM, conditional media; ChIP, chromatin immunoprecipitation; Col1a1, collagen, type I, alpha 1; DMXAA, 5,6-dimethylxanthenone-4-acetic acid; ER, endoplasmic reticulum; EtBr, ethidium bromide; HSC, hepatic stellate cell; IRE1α, inositol-requiring enzyme-1α; IRF3, interferon regulatory factor 3; KEGG, Kyoto Encyclopedia of Genes and Genomes; LC3B, microtubule-associated protein 1 light chain 3 beta; LPS, lipopolysaccharide; Liver fibrosis; MCD, methionine/choline-deficient diet; Macrophage; Mitophagy; MnSOD, manganese superoxide dismutase; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NLRP3, nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3; PBMCs, peripheral blood mononuclear cells; ROS, reactive oxygen species; STING; STING, stimulator of interferon genes; TBK1, TANK binding kinase 1; TGF-β1, transforming growth factor beta 1; TLR, Toll-like receptor; TNF-α, tumour necrosis factor alpha; Timp1, tissue inhibitor of matrix metalloproteinase 1; WT, wild-type; XBP1; XBP1, X-box binding protein 1; cGAS, cyclic GMP-AMP synthase; mtDNA; mtDNA, mitochondrial DNA; p62, sequestosome 1; sXBP1, spliced XBP1; shRNAs, short hairpin RNAs; uXBP1, unspliced XBP1
    DOI:  https://doi.org/10.1016/j.jhepr.2022.100555
  16. J Heart Lung Transplant. 2022 Aug 20. pii: S1053-2498(22)02076-9. [Epub ahead of print]
       BACKGROUND: Genetically modified dendritic cells (DCs) modulate the alloimmunity of T lymphocytes by regulating antigen presentation.
    METHODS: We generated mice with specific deletion of the X-box-binding protein 1 (XBP1) allele in bone marrow cells and cultured bone marrow-derived DCs (Xbp1-/- BMDCs) from these animals. We then tested the phenotype of Xbp1-/- BMDCs, evaluated their capability to activate allogeneic T cells and investigated their mechanistic actions. We developed a mouse model of allogeneic heart transplantation in which recipients received PBS, Xbp1-/- BMDCs, a suboptimal dose of cyclosporine A (CsA), or Xbp1-/- BMDCs combined with a suboptimal dose of CsA to evaluate the effects of Xbp1-/- BMDC transfusion on alloimmunity and on the survival of heart allografts.
    RESULTS: The deletion of XBP1 in BMDCs exploited the IRE1-dependent decay of TAPBP mRNA to reduce the expression of MHC-I on the cell surface, altered the capability of BMDCs to activate CD8+ T cells, and ultimately suppressed CD8+ T-cell-mediated allogeneic rejection. The adoptive transfer of Xbp1-/- BMDCs inhibited CD8+ T-cell-mediated rejection. In addition, XBP1-deficient BMDCs were weak stimulators of allogeneic CD4+ T cells despite expressing high levels of MHC-II and costimulatory molecules on their cell surface. Moreover, the adoptive transfer of Xbp1-/- BMDCs inhibited the production of circulating donor-specific IgG. The combination of Xbp1-/- BMDCs and CsA treatment significantly prolonged the survival of allografts compared to CsA alone.
    CONCLUSIONS: The deletion of XBP1 induces immunosuppressive BMDCs, and treatment with these immunosuppressive BMDCs prevents alloimmune rejection and improves the outcomes of heart transplantation. This finding provides a promising therapeutic target in combating transplant rejection and expands knowledge of inducing therapeutic DCs.
    Keywords:  IRE1-dependent decay (RIDD); MHC-I; X-box-binding protein 1 (XBP1); dendritic cells (DCs); heart transplantation
    DOI:  https://doi.org/10.1016/j.healun.2022.08.010