bims-unfpre Biomed News
on Unfolded protein response
Issue of 2021‒01‒03
ten papers selected by
Susan Logue
University of Manitoba


  1. Cell Rep. 2020 Dec 29. pii: S2211-1247(20)31552-7. [Epub ahead of print]33(13): 108563
      Misfolded proteins in the endoplasmic reticulum (ER) activate IRE1α endoribonuclease in mammalian cells, which mediates XBP1 mRNA splicing to produce an active transcription factor. This promotes the expression of specific genes to alleviate ER stress, thereby attenuating IRE1α. Although sustained activation of IRE1α is linked to human diseases, it is not clear how IRE1α is attenuated during ER stress. Here, we identify that Sec63 is a subunit of the previously identified IRE1α/Sec61 translocon complex. We find that Sec63 recruits and activates BiP ATPase through its luminal J-domain to bind onto IRE1α. This leads to inhibition of higher-order oligomerization and attenuation of IRE1α RNase activity during prolonged ER stress. In Sec63-deficient cells, IRE1α remains activated for a long period of time despite the presence of excess BiP in the ER. Thus, our data suggest that the Sec61 translocon bridges IRE1α with Sec63/BiP to regulate the dynamics of IRE1α signaling in cells.
    Keywords:  ER stress; IRE1; Sec61 translocon; endoplasmic reticulum; protein translocation; unfolded protein response
    DOI:  https://doi.org/10.1016/j.celrep.2020.108563
  2. Science. 2021 Jan 01. pii: eabb6896. [Epub ahead of print]371(6524):
      Tissue homeostasis is perturbed in a diversity of inflammatory pathologies. These changes can elicit endoplasmic reticulum (ER) stress, protein misfolding, and cell death. ER stress triggers the unfolded protein response (UPR), which can promote recovery of ER proteostasis and cell survival or trigger programmed cell death. Here, we leveraged single-cell RNA sequencing to define dynamic transcriptional states associated with the adaptive versus terminal UPR in the mouse intestinal epithelium. We integrated these transcriptional programs with genome-scale CRISPR screening to dissect the UPR pathway functionally. We identified QRICH1 as a key effector of the PERK-eIF2α axis of the UPR. QRICH1 controlled a transcriptional program associated with translation and secretory networks that were specifically up-regulated in inflammatory pathologies. Thus, QRICH1 dictates cell fate in response to pathological ER stress.
    DOI:  https://doi.org/10.1126/science.abb6896
  3. Cell Biol Int. 2020 Dec 16.
      The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes endoplasmic reticulum stress (ERS), which is characteristic of cells with high levels of secretory activity and is involved in a variety of diseases. In response to ERS, cells initiate an adaptive process named the unfolding protein response (UPR) to maintain intracellular homeostasis and survival. However, long term and unresolved ERS can also induce apoptosis. As the most conserved signaling branch of UPR, the IRE1-XBP1 pathway plays an important role in both physiological and pathological states, and its activity has a profound impact on disease progression and prognosis. Here, the latest research progress of IRE1-XBP1 pathway in cancer, metabolic diseases, and other diseases was briefly introduced, and the relationship between several diseases and this pathway was analyzed. Besides, the new understanding and prospect of IRE1-XBP1 pathway regulating male reproduction were reviewed.
    Keywords:  ER stress; IRE1α; XBP1; disease
    DOI:  https://doi.org/10.1002/cbin.11533
  4. Front Oncol. 2020 ;10 608911
      Glioblastoma (GBM) is the most common primary brain tumor, carrying a very poor prognosis, with median overall survival at about 12 to 15 months despite surgical resection, chemotherapy with temozolomide (TMZ), and radiation therapy. GBM recurs in the vast majority of patients, with recurrent tumors commonly displaying increase in resistance to standard of care chemotherapy, TMZ, as well as radiotherapy. One of the most commonly cited mechanisms of chemotherapeutic and radio-resistance occurs via the glucose-regulated protein 78 (GRP78), a well-studied mediator of the unfolded protein response (UPR), that has also demonstrated potential as a biomarker in GBM. Overexpression of GRP78 has been directly correlated with malignant tumor characteristics, including higher tumor grade, cellular proliferation, migration, invasion, poorer responses to TMZ and radiation therapy, and poorer patient outcomes. GRP78 expression is also higher in GBM tumor cells upon recurrence. Meanwhile, knockdown or suppression of GRP78 has been shown to sensitize cells to TMZ and radiation therapy. In light of these findings, various novel developing therapies are targeting GRP78 as monotherapies, combination therapies that enhance the effects of TMZ and radiation therapy, and as treatment delivery modalities. In this review, we delineate the mechanisms by which GRP78 has been noted to specifically modulate glioblastoma behavior and discuss current developing therapies involving GRP78 in GBM. While further research is necessary to translate these developing therapies into clinical settings, GRP78-based therapies hold promise in improving current standard-of-care GBM therapy and may ultimately lead to improved patient outcomes.
    Keywords:  ER stress; GBM therapeutic target; GBM—Glioblastoma multiforme; GRP94; TMZ (Temozolomide); UPR—unfolded protein response; glioma; glucose regulated protein 78 (GRP78)
    DOI:  https://doi.org/10.3389/fonc.2020.608911
  5. Trends Pharmacol Sci. 2020 Dec 19. pii: S0165-6147(20)30266-2. [Epub ahead of print]
      Diabetes is a disease with pandemic dimensions and no pharmacological treatment prevents disease progression. Dedifferentiation has been proposed to be a driver of beta-cell dysfunction in both type 1 and type 2 diabetes. Regenerative therapies aim to re-establish function in dysfunctional or dedifferentiated beta cells and restore the defective insulin secretion. Unsustainable levels of insulin production, with increased demand at disease onset, strain the beta-cell secretory machinery, leading to endoplasmic reticulum (ER) stress. Unresolved chronic ER stress is a major contributor to beta-cell loss of function and identity. Restoring ER homeostasis, enhancing ER-associated degradation of misfolded protein, and boosting chaperoning activity, are emerging therapeutic approaches for diabetes treatment.
    Keywords:  beta cell; diabetes; endoplasmic reticulum stress; pharmacology
    DOI:  https://doi.org/10.1016/j.tips.2020.11.011
  6. Proc Natl Acad Sci U S A. 2021 Jan 05. pii: e2011763118. [Epub ahead of print]118(1):
      Macrophages activated with interferon-γ (IFN-γ) in combination with other proinflammatory stimuli, such as lipopolysaccharide or tumor necrosis factor-α (TNF-α), respond with transcriptional and cellular changes that enhance clearance of intracellular pathogens at the risk of damaging tissues. IFN-γ effects must therefore be carefully balanced with inhibitory mechanisms to prevent immunopathology. We performed a genome-wide CRISPR knockout screen in a macrophage cell line to identify negative regulators of IFN-γ responses. We discovered an unexpected role of the ubiquitin-fold modifier (Ufm1) conjugation system (herein UFMylation) in inhibiting responses to IFN-γ and lipopolysaccharide. Enhanced IFN-γ activation in UFMylation-deficient cells resulted in increased transcriptional responses to IFN-γ in a manner dependent on endoplasmic reticulum stress responses involving Ern1 and Xbp1. Furthermore, UFMylation in myeloid cells is required for resistance to influenza infection in mice, indicating that this pathway modulates in vivo responses to infection. These findings provide a genetic roadmap for the regulation of responses to a key mediator of cellular immunity and identify a molecular link between the UFMylation pathway and immune responses.
    Keywords:  ER stress; UFMylation; autophagy; immunology; interferon
    DOI:  https://doi.org/10.1073/pnas.2011763118
  7. J Biochem. 2020 Dec 30. pii: mvaa145. [Epub ahead of print]
      VCells are constantly exposed to various types of stress, and disruption of the proper response lead to a variety of diseases. Among them, inflammation and apoptosis are important examples of critical responses and should be tightly regulated, as inappropriate control of these responses is detrimental to the organism. In several disease states, these responses are abnormally regulated, with adverse effects. Apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases that regulate inflammation and apoptosis after a variety of stimuli, such as oxidative stress and endoplasmic reticulum (ER) stress. In this review, we summarize recent reports on the ASK family in terms of their involvement in inflammatory diseases, focusing on upstream stimuli that regulate ASK family members.
    Keywords:  ASK family; ER stress; Inflammation; MAPK cascade; Oxidative stress
    DOI:  https://doi.org/10.1093/jb/mvaa145
  8. Life (Basel). 2020 Dec 22. pii: E1. [Epub ahead of print]11(1):
      Cellular protein homeostasis in the lungs is constantly disrupted by recurrent exposure to various external and internal stressors, which may cause considerable protein secretion pressure on the endoplasmic reticulum (ER), resulting in the survival and differentiation of these cell types to meet the increased functional demands. Cells are able to induce a highly conserved adaptive mechanism, known as the unfolded protein response (UPR), to manage such stresses. UPR dysregulation and ER stress are involved in numerous human illnesses, such as metabolic syndrome, fibrotic diseases, and neurodegeneration, and cancer. Therefore, effective and specific compounds targeting the UPR pathway are being considered as potential therapies. This review focuses on the impact of both external and internal stressors on the ER in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) and discusses the role of the UPR signaling pathway activation in the control of cellular damage and specifically highlights the potential involvement of non-coding RNAs in COPD. Summaries of pathogenic mechanisms associated with the ER stress/UPR axis contributing to IPF and COPD, and promising pharmacological intervention strategies, are also presented.
    Keywords:  UPR; autophagy; endoplasmic reticulum; fibrosis; lung disease; non-coding RNA; tissue remodeling
    DOI:  https://doi.org/10.3390/life11010001
  9. Sci Adv. 2020 Dec;pii: eabd7272. [Epub ahead of print]6(51):
      Islet inflammation is an important etiopathology of type 2 diabetes; however, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered RIPK3-dependent IL1B induction in β cells as an instigator of islet inflammation. In cultured β cells, ER stress activated RIPK3, leading to NF-kB-mediated proinflammatory gene expression. In a zebrafish muscle insulin resistance model, overnutrition caused islet inflammation, β cell dysfunction, and loss in an ER stress-, ripk3-, and il1b-dependent manner. In mouse islets, high-fat diet triggered the IL1B expression in β cells before macrophage recruitment in vivo, and RIPK3 inhibition suppressed palmitate-induced β cell dysfunction and Il1b expression in vitro. Furthermore, in human islets grafted in hyperglycemic mice, a marked increase in ER stress, RIPK3, and NF-kB activation in β cells were accompanied with murine macrophage infiltration. Thus, RIPK3-mediated induction of proinflammatory mediators is a conserved, previously unrecognized β cell response to metabolic stress and a mediator of the ensuing islet inflammation.
    DOI:  https://doi.org/10.1126/sciadv.abd7272
  10. Clin Sci (Lond). 2020 Dec 23. pii: CS20201137. [Epub ahead of print]
      Myocardial infarction (MI) is associated with renal alterations resulting in poor outcomes in patients with MI. Renal fibrosis is a potent predictor of progression in patients and is often accompanied by inflammation and oxidative stress; however, the mechanisms involved in these alterations are not well established. Endoplasmic reticulum (ER) plays a central role in protein processing and folding. An accumulation of unfolded proteins leads to ER dysfunction, termed ER stress. Since the kidney is the organ with highest protein synthesis fractional rate, we herein investigated the effects of MI on ER stress at renal level, as well as the possible role of ER stress on renal alterations after MI. Patients and MI male Wistar rats showed an increase in the kidney injury marker neutrophil gelatinase-associated lipocalin (NGAL) at circulating level. Four weeks post-MI rats presented renal fibrosis, oxidative stress and inflammation accompanied by ER stress activation characterized by enhanced immunoglobin binding protein (BiP), protein disulfide-isomerase A6 (PDIA6) and activating transcription factor 6-alpha (ATF6α) protein levels. In renal fibroblasts, palmitic acid (PA; 50-200 µM) and angiotensin II (Ang II; 10-8-10-6M) promoted extracellular matrix, superoxide anion production and inflammatory markers upregulation. The presence of the ER stress inhibitor, 4-phenylbutyric acid (4-PBA; 4 µM), was able to prevent all of these modifications in renal cells. Therefore, the data show that ER stress mediates the deleterious effects of PA and Ang II in renal cells and support the potential role of ER stress on renal alterations associated with MI.
    Keywords:  endoplasmic reticulum stress; myocardial infarction; renal fibrosis
    DOI:  https://doi.org/10.1042/CS20201137