bims-unfpre Biomed News
on Unfolded protein response
Issue of 2020–06–07
four papers selected by
Susan Logue, University of Manitoba



  1. J Cell Sci. 2020 Jun 01. pii: jcs.240622. [Epub ahead of print]
      Foot-and-mouth disease virus (FMDV) is a picornavirus that causes contagious acute infection in cloven-hoofed animals. FMDV replication associated viral protein expression induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR), in turn inducing autophagy to restore cellular homeostasis. We observed that inhibition of BiP, a master regulator of ER stress and UPR, decreased FMDV infection confirming their involvement. Further, we show that the FMDV infection induces UPR mainly through PKR-like ER kinase (PERK)-mediated pathway. Knockdown of PERK and chemical inhibition of PERK activation resulted in decreased expression of FMDV proteins along with the reduction of autophagy marker protein LC3B-II. There are conflicting reports on the role of autophagy in FMDV multiplication. Our study systematically demonstrates that during FMDV infection, PERK mediated UPR stimulated an increased level of endogenous LC3B-II and turnover of SQSTM1, thus confirming the activation of functional autophagy. Modulation of UPR and autophagy by pharmacological and genetic approaches resulted in reduced viral progeny, by enhancing antiviral interferon response. Taken together, this study underscores the prospect of exploring the PERK mediated autophagy as an antiviral target.
    Keywords:  Autophagy; Foot-and-mouth disease virus; Interferon; LC3; P-eIF2α; PERK; Unfolded protein response
    DOI:  https://doi.org/10.1242/jcs.240622
  2. Exp Mol Med. 2020 Jun 05.
      The endoplasmic reticulum (ER) stress response is an adaptive mechanism that is activated upon disruption of ER homeostasis and protects the cells against certain harmful environmental stimuli. However, critical and prolonged cell stress triggers cell death. In this study, we demonstrate that Flightless-1 (FliI) regulates ER stress-induced apoptosis in colon cancer cells by modulating Ca2+ homeostasis. FliI was highly expressed in both colon cell lines and colorectal cancer mouse models. In a mouse xenograft model using CT26 mouse colorectal cancer cells, tumor formation was slowed due to elevated levels of apoptosis in FliI-knockdown (FliI-KD) cells. FliI-KD cells treated with ER stress inducers, thapsigargin (TG), and tunicamycin exhibited activation of the unfolded protein response (UPR) and induction of UPR-related gene expression, which eventually triggered apoptosis. FliI-KD increased the intracellular Ca2+ concentration, and this upregulation was caused by accelerated ER-to-cytosolic efflux of Ca2+. The increase in intracellular Ca2+ concentration was significantly blocked by dantrolene and tetracaine, inhibitors of ryanodine receptors (RyRs). Dantrolene inhibited TG-induced ER stress and decreased the rate of apoptosis in FliI-KD CT26 cells. Finally, we found that knockdown of FliI decreased the levels of sorcin and ER Ca2+ and that TG-induced ER stress was recovered by overexpression of sorcin in FliI-KD cells. Taken together, these results suggest that FliI regulates sorcin expression, which modulates Ca2+ homeostasis in the ER through RyRs. Our findings reveal a novel mechanism by which FliI influences Ca2+ homeostasis and cell survival during ER stress.
    DOI:  https://doi.org/10.1038/s12276-020-0448-3
  3. PLoS One. 2020 ;15(6): e0234147
      Conversion of cellular prion protein (PrPC) into the pathogenic isoform of prion protein (PrPSc) in neurons is one of the key pathophysiological events in prion diseases. However, the molecular mechanism of neurodegeneration in prion diseases has yet to be fully elucidated because of a lack of suitable experimental models for analyzing neuron-autonomous responses to prion infection. In the present study, we used neuron-enriched primary cultures of cortical and thalamic mouse neurons to analyze autonomous neuronal responses to prion infection. PrPSc levels in neurons increased over the time after prion infection; however, no obvious neuronal losses or neurite alterations were observed. Interestingly, a finer analysis of individual neurons co-stained with PrPSc and phosphorylated protein kinase RNA-activated-like endoplasmic reticulum (ER) kinase (p-PERK), the early cellular response of the PERK-eukaryotic initiation factor 2 (eIF2α) pathway, demonstrated a positive correlation between the number of PrPSc granular stains and p-PERK granular stains, in cortical neurons at 21 dpi. Although the phosphorylation of PERK was enhanced in prion-infected cortical neurons, there was no sign of subsequent translational repression of synaptic protein synthesis or activations of downstream unfolded protein response (UPR) in the PERK-eIF2α pathway. These results suggest that PrPSc production in neurons induces ER stress in a neuron-autonomous manner; however, it does not fully activate UPR in prion-infected neurons. Our findings provide insights into the autonomous neuronal responses to prion propagation and the involvement of neuron-non-autonomous factor(s) in the mechanisms of neurodegeneration in prion diseases.
    DOI:  https://doi.org/10.1371/journal.pone.0234147
  4. J Cancer. 2020 ;11(15): 4464-4473
      Targeting EGFR combined with chemotherapy is one of the most valuable therapeutic strategies in colorectal cancer. However, resistance remains a major obstacle to improve efficacy. IRE1α-XBP1s signaling pathway is activated in many malignant tumors, and plays important roles in chemoresistance. Therefore, IRE1α-XBP1s might be a potential target to overcome the chemoresistance in colorectal cancer. In this study, we detected the activation of IRE1α-XBP1s signaling in patient cancer tissues and colorectal cancer cell lines. The phosphorylation level of IRE1α and the spliced XBP1s were aberrantly elevated in colorectal cancer, and IRE1α-XBP1s signaling activation was correlated with high EGFR expression. By overexpression of EGFR protein or activation by EGF treatment, we found that EGFR activation could enhance the phosphorylation of IRE1α and spliced XBP1s expression. On the contrary, inhibition of EGFR decreased the IRE1α-XBP1s signaling. Further, we examined the downstream signaling pathways regulated by EGFR. Inhibition of ERK activity could reverse the EGFR induced IRE1α-XBP1s activation. Co-IP confirmed the physical interaction of ERK and IRE1α. Cell growth and colony formation assay showed that the inhibition of IRE1α activity could suppress EGFR driven colorectal cancer cell proliferation. Furthermore, we found that oxaliplatin could activate IRE1α-XBP1s signaling, and combination with cetuximab partially reversed the activation. Inhibition of EGFR signaling could enhance the efficacy of oxaliplatin in vitro and in vivo. Our results showed that IRE1α RNase activity is aberrantly elevated in colorectal cancer, and EGFR signaling could activate IRE1α/XBP1s possibly through EGFR-MEK-ERK pathway. IRE1α-XBP1s pathway might involve in EGFR driven tumor cell proliferation. Cetuximab could partially recover oxaliplatin-induced IRE1α-XBP1s activation, and therefore enhance the anti-tumor efficacy of oxaliplatin. Our findings declare a new mechanism that targeting EGFR could inhibit chemotherapy-induced IRE1α-XBP1s activation and therefore enhance the efficacy.
    Keywords:  Colorectal cancer; EGFR; IRE1α-XBP1s pathway
    DOI:  https://doi.org/10.7150/jca.44234