J Biol Chem. 2020 Nov 09. pii: jbc.RA120.014479. [Epub ahead of print]
Masato Mashimo,
Mayu Onishi,
Arina Uno,
Akari Tanimichi,
Akari Nobeyama,
Mana Mori,
Sayaka Yamada,
Shigeru Negi,
Xiangning Bu,
Jiro Kato,
Joel Moss,
Noriko Sanada,
Ryoichi Kizu,
Takeshi Fujii.
Poly(ADP-ribose) polymerase (PARP1) is a nuclear protein that is activated by binding to DNA lesions and catalyzes poly(ADP- ribosyl)ation of nuclear acceptor proteins, including PARP1 itself, to recruit DNA repair machinery to DNA lesions. When excessive DNA damage occurs, poly(ADP-ribose) (PAR) produced by PARP1 is translocated to the cytoplasm, changing the activity and localization of cytoplasmic proteins e.g. apoptosis-inducing factor (AIF), hexokinase and resulting in cell death. This cascade, termed parthanatos, is a caspase-independent programmed cell death distinct from necrosis and apoptosis. In contrast, PARP1 is a substrate of activated caspases 3 and 7 in caspase-dependent apoptosis. Once cleaved, PARP1 loses its activity, thereby suppressing DNA repair. Caspase cleavage of PARP1 occurs within a nuclear localization signal near the DNA-binding domain, resulting in the formation of 24-kDa and 89-kDa fragments. In the current study, we found that caspase activation by staurosporine- and actinomycin D-induced PARP1 auto-poly(ADP-ribosyl)ation and fragmentation, generating poly(ADP-ribosyl)ated 89-kDa and 24-kDa PARP1 fragments. The 89-kDa PARP1 fragments with covalently attached PAR polymers were translocated to the cytoplasm, while 24-kDa fragments remained associated with DNA lesions. In the cytoplasm, AIF binding to PAR attached to the 89-kDa PARP1 fragment facilitated its translocation to the nucleus. Thus, the 89-kDa PARP1 fragment is a PAR carrier to the cytoplasm, inducing AIF release from mitochondria. Elucidation of the caspase-mediated interaction between apoptosis and parthanatos pathways extend the current knowledge on mechanisms underlying programmed cell death and may lead to new therapeutic targets.
Keywords: ADP-ribosylation; DNA damage; apoptosis; apoptosis-inducing factor; caspase; cell death; parthanatos; poly(ADP-ribose) polymerase 1; poly(ADP-ribosyl)ation; post-translational modification (PTM)