bims-tumime Biomed News
on Tumor microenvironment and metabolism
Issue of 2024–05–12
six papers selected by
Alex Muir, University of Chicago



  1. Front Immunol. 2024 ;15 1375461
      Excess dietary fructose consumption has been long proposed as a culprit for the world-wide increase of incidence in metabolic disorders and cancer within the past decades. Understanding that cancer cells can gradually accumulate metabolic mutations in the tumor microenvironment, where glucose is often depleted, this raises the possibility that fructose can be utilized by cancer cells as an alternative source of carbon. Indeed, recent research has increasingly identified various mechanisms that show how cancer cells can metabolize fructose to support their proliferating and migrating needs. In light of this growing interest, this review will summarize the recent advances in understanding how fructose can metabolically reprogram different types of cancer cells, as well as how these metabolic adaptations can positively support cancer cells development and malignancy.
    Keywords:  GLUT5; cancer; fructose; glycolysis; ketohexokinase (KHK); metabolic reprogramming; metabolism; tumor microenvironment (TME)
    DOI:  https://doi.org/10.3389/fimmu.2024.1375461
  2. Cancer Res. 2024 May 08.
      Metabolic reprogramming is a hallmark of cancer. In addition to metabolic alterations in the tumor cells, multiple other metabolically active cell types in the tumor microenvironment (TME) contribute to the emergence of a tumor-specific metabolic milieu. Here, we defined the metabolic landscape of the TME during progression of head and neck squamous cell carcinoma (HNSCC) by performing single-cell RNA sequencing (scRNA-seq) on 26 human patient specimens, including normal tissue, pre-cancerous lesions, early-stage cancer, advanced-stage cancer, lymph node metastases, and recurrent tumors. The analysis revealed substantial heterogeneity at the transcriptional, developmental, metabolic, and functional levels in different cell types. SPP1+ macrophages were identified as a pro-tumor and pro-metastatic macrophage subtype with high fructose and mannose metabolism, which was further substantiated by integrative analysis and validation experiments. An inhibitor of fructose metabolism reduced the proportion of SPP1+ macrophages, reshaped the immunosuppressive TME, and suppressed tumor growth. In conclusion, this work delineated the metabolic landscape of HNSCC at a single-cell resolution and identified fructose metabolism as a key metabolic feature of a pro-tumor macrophage subpopulation.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-23-1344
  3. Oncogene. 2024 May 08.
      Epigenetic regulation established during development to maintain patterns of transcriptional expression and silencing for metabolism and other fundamental cell processes can be reprogrammed in cancer, providing a molecular mechanism for persistent alterations in phenotype. Metabolic deregulation and reprogramming are thus an emerging hallmark of cancer with opportunities for molecular classification as a critical preliminary step for precision therapeutic intervention. Yet, acquisition of therapy resistance against most conventional treatment regimens coupled with tumor relapse, continue to pose unsolved problems for precision healthcare, as exemplified in breast cancer where existing data informs both cancer genotype and phenotype. Furthermore, epigenetic reprograming of the metabolic milieu of cancer cells is among the most crucial determinants of therapeutic resistance and cancer relapse. Importantly, subtype-specific epigenetic-metabolic interplay profoundly affects malignant transformation, resistance to chemotherapy, and response to targeted therapies. In this review, we therefore prismatically dissect interconnected epigenetic and metabolic regulatory pathways and then integrate them into an observable cancer metabolism-therapy-resistance axis that may inform clinical intervention. Optimally coupling genome-wide analysis with an understanding of metabolic elements, epigenetic reprogramming, and their integration by metabolic profiling may decode missing molecular mechanisms at the level of individual tumors. The proposed approach of linking metabolic biochemistry back to genotype, epigenetics, and phenotype for specific tumors and their microenvironment may thus enable successful mechanistic targeting of epigenetic modifiers and oncometabolites despite tumor metabolic heterogeneity.
    DOI:  https://doi.org/10.1038/s41388-024-03054-9
  4. Redox Rep. 2024 Dec;29(1): 2345455
       OBJECTIVES: Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress.
    METHODS: ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo.
    RESULTS: We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models.
    DISCUSSION: our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.
    Keywords:  Gastric cancer; NADPH; methylene tetrahydrofolate dehydrogenase 2 (MTHFD2); reactive oxygen species (ROS); redox metabolism
    DOI:  https://doi.org/10.1080/13510002.2024.2345455
  5. Mol Ther. 2024 May 07. pii: S1525-0016(24)00303-4. [Epub ahead of print]
      The tumor microenvironment presents many obstacles to effective CAR T cell therapy, including glucose competition from tumor and myeloid cells. Using mouse models of acute lymphoblastic leukemia (ALL), renal cell carcinoma (RCC), and glioblastoma (GBM), we show that enforced expression of the glucose transporter GLUT1 enhances anti-tumor efficacy and promotes favorable CAR T cell phenotypes for two clinically relevant CAR designs, 19-28z and IL13Rα2-BBz. In the NALM6 ALL model, 19-28z-GLUT1 promotes Tscm formation and prolongs survival. RNA sequencing of these CAR T cells reveals that overexpression of GLUT1, but not GLUT3, enriches for genes involved in glycolysis, mitochondrial respiration, and memory precursor phenotypes. Extending these data, 19-28z-GLUT1 CAR T cells improve tumor control and response to rechallenge in an RCC patient derived xenograft model. Furthermore, IL13Rα2-BBz CAR T cells overexpressing GLUT1 prolong survival of mice bearing orthotopic GBMs and exhibit decreased exhaustion markers. This novel engineering approach can offer a competitive advantage to CAR T cells in harsh tumor environments where glucose is limiting.
    DOI:  https://doi.org/10.1016/j.ymthe.2024.05.006
  6. Sci Immunol. 2024 May 10. 9(95): eadi4191
      Conventional dendritic cells (DCs) are essential mediators of antitumor immunity. As a result, cancers have developed poorly understood mechanisms to render DCs dysfunctional within the tumor microenvironment (TME). After identification of CD63 as a specific surface marker, we demonstrate that mature regulatory DCs (mregDCs) migrate to tumor-draining lymph node tissues and suppress DC antigen cross-presentation in trans while promoting T helper 2 and regulatory T cell differentiation. Transcriptional and metabolic studies showed that mregDC functionality is dependent on the mevalonate biosynthetic pathway and its master transcription factor, SREBP2. We found that melanoma-derived lactate activates SREBP2 in tumor DCs and drives conventional DC transformation into mregDCs via homeostatic or tolerogenic maturation. DC-specific genetic silencing and pharmacologic inhibition of SREBP2 promoted antitumor CD8+ T cell activation and suppressed melanoma progression. CD63+ mregDCs were found to reside within the lymph nodes of several preclinical tumor models and in the sentinel lymph nodes of patients with melanoma. Collectively, this work suggests that a tumor lactate-stimulated SREBP2-dependent program promotes CD63+ mregDC development and function while serving as a promising therapeutic target for overcoming immune tolerance in the TME.
    DOI:  https://doi.org/10.1126/sciimmunol.adi4191