bims-tumime Biomed News
on Tumor microenvironment and metabolism
Issue of 2024‒05‒05
two papers selected by
Alex Muir, University of Chicago

  1. Trends Cancer. 2024 Apr 30. pii: S2405-8033(24)00059-1. [Epub ahead of print]
      CD8+ cytotoxic T lymphocytes (CTLs) are central mediators of tumor immunity and immunotherapies. Upon tumor antigen recognition, CTLs differentiate from naive/memory-like toward terminally exhausted populations with more limited function against tumors. Such differentiation is regulated by both immune signals, including T cell receptors (TCRs), co-stimulation, and cytokines, and metabolism-associated processes. These immune signals shape the metabolic landscape via signaling, transcriptional and post-transcriptional mechanisms, while metabolic processes in turn exert spatiotemporal effects to modulate the strength and duration of immune signaling. Here, we review the bidirectional regulation between immune signals and metabolic processes, including nutrient uptake and intracellular metabolic pathways, in shaping CTL differentiation and exhaustion. We also discuss the mechanisms underlying how specific nutrient sources and metabolite-mediated signaling events orchestrate CTL biology. Understanding how metabolic programs and their interplay with immune signals instruct CTL differentiation and exhaustion is crucial to uncover tumor-immune interactions and design novel immunotherapies.
    Keywords:  T cell differentiation; TCR; antitumor function; cytokines; exhaustion; mitochondrial fitness
  2. Pharmacol Rev. 2024 May 02. 76(3): 388-413
      The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.