bims-tumime Biomed News
on Tumor microenvironment and metabolism
Issue of 2024–02–11
six papers selected by
Alex Muir, University of Chicago



  1. bioRxiv. 2024 Jan 24. pii: 2024.01.21.576568. [Epub ahead of print]
      Phenotypic diversity of cancer cells within tumors generated through bi-directional interactions with the tumor microenvironment has emerged as a major driver of disease progression and therapy resistance. Nutrient availability plays a critical role in determining phenotype, but whether specific nutrients elicit different responses on distinct phenotypes is poorly understood. Here we show, using melanoma as a model, that only MITF Low undifferentiated cells, but not MITF High cells, are competent to drive lipolysis in human adipocytes. In contrast to MITF High melanomas, adipocyte-derived free fatty acids are taken up by undifferentiated MITF Low cells via a fatty acid transporter (FATP)-independent mechanism. Importantly, oleic acid (OA), a monounsaturated long chain fatty acid abundant in adipose tissue and lymph, reprograms MITF Low undifferentiated melanoma cells to a highly invasive state by ligand-independent activation of AXL, a receptor tyrosine kinase associated with therapy resistance in a wide range of cancers. AXL activation by OA then drives SRC-dependent formation and nuclear translocation of a β-catenin-CAV1 complex. The results highlight how a specific nutritional input drives phenotype-specific activation of a pro-metastasis program with implications for FATP-targeted therapies.
    DOI:  https://doi.org/10.1101/2024.01.21.576568
  2. Cell Metab. 2024 Jan 23. pii: S1550-4131(24)00006-8. [Epub ahead of print]
      Tumors employ diverse strategies for immune evasion. Unraveling the mechanisms by which tumors suppress anti-tumor immunity facilitates the development of immunotherapies. Here, we have identified tumor-secreted fibroblast growth factor 21 (FGF21) as a pivotal immune suppressor. FGF21 is upregulated in multiple types of tumors and promotes tumor progression. Tumor-secreted FGF21 significantly disrupts anti-tumor immunity by rewiring cholesterol metabolism of CD8+T cells. Mechanistically, FGF21 sustains the hyperactivation of AKT-mTORC1-sterol regulatory-element-binding protein 1 (SREBP1) signal axis in the activated CD8+T cells, resulting in the augment of cholesterol biosynthesis and T cell exhaustion. FGF21 knockdown or blockade using a neutralizing antibody normalizes AKT-mTORC1 signaling and reduces excessive cholesterol accumulation in CD8+T cells, thus restoring CD8+T cytotoxic function and robustly suppressing tumor growth. Our findings reveal FGF21 as a "secreted immune checkpoint" that hampers anti-tumor immunity, suggesting that inhibiting FGF21 could be a valuable strategy to enhance the cancer immunotherapy efficacy.
    Keywords:  CD8(+)T; FGF21; cancer immunotherapy; cholesterol; mTORC1; tumor immune evasion
    DOI:  https://doi.org/10.1016/j.cmet.2024.01.005
  3. Curr Opin Biotechnol. 2024 Feb 03. pii: S0958-1669(24)00004-1. [Epub ahead of print]86 103068
      Profiling spatial distributions of lipids, metabolites, and proteins in tumors can reveal unique cellular microenvironments and provide molecular evidence for cancer cell dysfunction and proliferation. Mass spectrometry imaging (MSI) is a label-free technique that can be used to map biomolecules in tumors in situ. Here, we discuss current progress in applying MSI to uncover molecular heterogeneity in tumors. First, the analytical strategies to profile small molecules and proteins are outlined, and current methods for multimodal imaging to maximize biological information are highlighted. Second, we present and summarize biological insights obtained by MSI of tumor tissue. Finally, we discuss important considerations for designing MSI experiments and several current analytical challenges.
    DOI:  https://doi.org/10.1016/j.copbio.2024.103068
  4. Research (Wash D C). 2024 ;7 0300
      Ferroptosis, a nonapoptotic form of cell death, is an emerging potential therapeutic target for various diseases, including cancer. However, the role of ferroptosis in pancreatic cancer remains poorly understood. Pancreatic ductal adenocarcinoma (PDAC) is characterized by a poor prognosis and chemotherapy resistance, attributed to its high Kirsten rats arcomaviral oncogene homolog mutation rate and severe nutritional deficits resulting from a dense stroma. Several studies have linked rat sarcoma (RAS) mutations to ferroptosis, suggesting that inducing ferroptosis may be an effective strategy against oncogenic RAS-bearing tumors. We investigated the role of Family With Sequence Similarity 60 Member A (FAM60A) in this study, a protein closely associated with a poor prognosis and highly expressed in PDAC and tumor tissue from KrasG12D/+;Trp53R172H/+; Pdx1-Cre mice, in regulating ferroptosis, tumor growth, and gemcitabine sensitivity in vitro and in vivo. Our results demonstrate that FAM60A regulates 3 essential metabolic enzymes, ACSL1/4 and GPX4, to protect PDAC cells from ferroptosis. Furthermore, we found that YY1 transcriptionally regulates FAM60A expression by promoting its transcription, and the Hippo-YY1 pathway is restricted in the low-amino-acid milieu in the context of nutrient deprivation, leading to downstream suppression of peroxisome proliferator-activated receptor and ACSL1/4 and activation of GPX4 pathways. Importantly, FAM60A knockdown sensitized PDAC cells to gemcitabine treatment. A new understanding of FAM60A transcriptional regulation pattern in PDAC and its dual function in ferroptosis reliever and chemotherapy resistance is provided by our study. Targeting FAM60A may therefore offer a promising therapeutic approach for PDAC by simultaneously addressing 2 major features of the disease (high RAS mutation rate and tumor microenvironment nutrient deficiency) and preventing tumor cell metabolic adaptation.
    DOI:  https://doi.org/10.34133/research.0300
  5. bioRxiv. 2023 Dec 28. pii: 2023.12.28.573554. [Epub ahead of print]
      The microenvironment is an important regulator of intertumoral trafficking and activity of immune cells. Understanding how the immune system can be tailored to maintain anti-tumor killing responses in metastatic disease remains an important goal. Thus, immune mediated eradication of metastasis requires the consideration of organ specific microenvironmental cues. Using a xenograft model of melanoma metastasis in adult zebrafish, we perturbed the dynamic balance between the infiltrating immune cells in the metastatic setting using a suite of different transgenic zebrafish. We employed intravital imaging coupled with metabolism imaging (FLIM) to visualize and map the organ specific metabolism with near simultaneity in multiple metastatic lesions. Of all the MHC complexes examined for brain and skeletal metastases, we determined that there is an organ specific expression of mhc1uba (human ortholog, MR1 ) for both the melanoma cells and the resident and infiltrating immune cells. Specifically, immune clusters did not express mhc1uba in brain metastatic lesions in immune competent fish. Finally, the differential immune response drove organ specific metabolism where tumor glycolysis was increased in brain metastases compared to skeletal and parental lines as measured using fluorescence lifetime imaging microscopy (FLIM). As MR1 belongs to the MHC class I molecules and is a target of immunotherapeutic drugs, we believe that our data presents an opportunity to understand the relationship between organ specific tumor metabolism and drug efficacy in the metastatic setting.
    DOI:  https://doi.org/10.1101/2023.12.28.573554
  6. Anal Chem. 2024 Feb 05.
      To enhance our comprehension of the fundamental mechanisms driving tumor metabolism and metastasis, it is essential to dynamically monitor intratumoral lipid droplet (LD) and collagen processes in vivo. Traditional LD analysis in tumors predominantly relies on observations of in vitro cells or tissue slices, which unfortunately hinder real-time insights into the dynamic behavior of LDs during in vivo tumor progression. In this study, we developed a dual-modality imaging technique that combines coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy for in vivo monitoring of tumor LDs and collagen alterations, assisted by a murine breast cancer 4T1 cell-based dorsal skinfold window. Specifically, we accomplished real-time observations and quantitative analysis of the LD size, density, and collagen alignment within living tumors through CARS/SHG imaging. Additionally, our findings demonstrate that real-time LD monitoring provides a valuable means of assessing the efficacy of anticancer drugs in vivo. We evaluated the impact of adipose activators on lipid metabolism, oxidative stress, and tumor suppression by monitoring changes in LD size and density. Overall, this study highlights the potential of dual-modality CARS/SHG microscopy as a sensitive and flexible tool for antitumor therapeutic strategies.
    DOI:  https://doi.org/10.1021/acs.analchem.3c05767