bims-tumime Biomed News
on Tumor microenvironment and metabolism
Issue of 2024‒01‒07
eleven papers selected by
Alex Muir, University of Chicago

  1. Biochim Biophys Acta Rev Cancer. 2023 Dec 27. pii: S0304-419X(23)00211-1. [Epub ahead of print] 189062
      Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
    Keywords:  Caloric restriction; Dietary intervention; Fasting-mimicking diet; Ketogenic diet; cancer metabolism
  2. Nat Cancer. 2024 Jan 02.
      Availability of the essential amino acid methionine affects cellular metabolism and growth, and dietary methionine restriction has been implicated as a cancer therapeutic strategy. Nevertheless, how liver cancer cells respond to methionine deprivation and underlying mechanisms remain unclear. Here we find that human liver cancer cells undergo irreversible cell cycle arrest upon methionine deprivation in vitro. Blocking methionine adenosyl transferase 2A (MAT2A)-dependent methionine catabolism induces cell cycle arrest and DNA damage in liver cancer cells, resulting in cellular senescence. A pharmacological screen further identified GSK3 inhibitors as senolytics that selectively kill MAT2A-inhibited senescent liver cancer cells. Importantly, combined treatment with MAT2A and GSK3 inhibitors therapeutically blunts liver tumor growth in vitro and in vivo across multiple models. Together, methionine catabolism is essential for liver tumor growth, and its inhibition can be exploited as an improved pro-senescence strategy for combination with senolytic agents to treat liver cancer.
  3. Cell Rep. 2023 Dec 30. pii: S2211-1247(23)01640-6. [Epub ahead of print]43(1): 113629
      The interplay between metabolism and chromatin signaling is implicated in cancer progression. However, whether and how metabolic reprogramming in tumors generates chromatin vulnerabilities remain unclear. Lung adenocarcinoma (LUAD) tumors frequently harbor aberrant activation of the NRF2 antioxidant pathway, which drives aggressive and chemo-resistant disease. Using a chromatin-focused CRISPR screen, we report that NRF2 activation sensitizes LUAD cells to genetic and chemical inhibition of class I histone deacetylases (HDACs). This association is observed across cultured cells, mouse models, and patient-derived xenografts. Integrative epigenomic, transcriptomic, and metabolomic analysis demonstrates that HDAC inhibition causes widespread redistribution of H4ac and its reader protein, which transcriptionally downregulates metabolic enzymes. This results in reduced flux into amino acid metabolism and de novo nucleotide synthesis pathways that are preferentially required for the survival of NRF2-active cancer cells. Together, our findings suggest NRF2 activation as a potential biomarker for effective repurposing of HDAC inhibitors to treat solid tumors.
    Keywords:  CP: Cancer; HDAC inhibitors; NRF2 pathway; cancer epigenetics; cancer metabolism; cancer targeted therapy; epigenetic reprogramming; lung cancer
  4. Front Biosci (Landmark Ed). 2023 Dec 26. 28(12): 348
      Breast cancer has a special tumor microenvironment compared to other solid tumors, which is usually surrounded by a large number of adipocytes that can produce and secrete fatty acids and adipokines. Adipocytes have a remodeling effect on breast cancer lipid metabolism, while fatty acids and lipid droplets can make breast cancer cells more aggressive. Lipid metabolism, especially the synthesis of fatty acids, is an important cellular process for membrane biosynthesis, energy storage, and signal molecule production. Therefore, blocking the lipid supply to cancer cells or changing the lipid composition has an important impact on the signal transmission and cell proliferation of cancer cells. Alterations in lipid availability can also affect cancer cell migration, induction of angiogenesis, metabolic symbiosis, evasion of immune surveillance, and cancer drug resistance. Fatty acid synthesis and metabolism have received extensive attention as potential targets for cancer therapy, and studies on modulating the tumor lipid microenvironment to improve the sensitivity of antitumor drugs have also been discussed; however, strategies to target these processes have not been translated into clinical practice.
    Keywords:  drug discovery; drug resistance; fatty acid; lipid metabolism
  5. Res Sq. 2023 Dec 12. pii: [Epub ahead of print]
      Disrupted lipid metabolism is a characteristic of gliomas. This study utilizes an ultrastructural approach to characterize the prevalence and distribution of lipids within gliomas. This study made use of tissue from IDH1 wild type (IDH1-wt) glioblastoma (n = 18) and IDH1 mutant (IDH1-mt) astrocytoma (n = 12) tumors. We uncover a prevalent and intriguing surplus of lipids. The bulk of the lipids manifested as sizable cytoplasmic inclusions and extracellular deposits in the tumor microenvironment (TME); in some tumors the lipids were stored in the classical membraneless spheroidal lipid droplets (LDs). Frequently, lipids accumulated inside mitochondria, suggesting possible dysfunction of the beta-oxidation pathway. Additionally, the tumor vasculature have lipid deposits in their lumen and vessel walls; this lipid could have shifted in from the tumor microenvironment or have been produced by the vessel-invading tumor cells. Lipid excess in gliomas stems from disrupted beta-oxidation and dysfunctional oxidative phosphorylation pathways. The implications of this lipid-driven environment include structural support for the tumor cells and protection against immune responses, non-lipophilic drugs, and free radicals.
  6. J Exp Clin Cancer Res. 2024 Jan 02. 43(1): 6
      BACKGROUND: About 10% of NSCLCs are mutated in KRAS and impaired in STK11/LKB1, a genetic background associated with poor prognosis, caused by an increase in metastatic burden and resistance to standard therapy. LKB1 is a protein involved in a number of biological processes and is particularly important for its role in the regulation of cell metabolism. LKB1 alterations lead to protein loss that causes mitochondria and metabolic dysfunction that makes cells unable to respond to metabolic stress. Different studies have shown how it is possible to interfere with cancer metabolism using metformin and caloric restriction (CR) and both modify the tumor microenvironment (TME), stimulating the switch from "cold" to "hot". Given the poor therapeutic response of KRASmut/LKB1mut patients, and the role of LKB1 in cell metabolism, we examined whether the addition of metformin and CR enhanced the response to chemo or chemo-immunotherapy in LKB1 impaired tumors.METHODS: Mouse cell lines were derived from lung nodules of transgenic mice carrying KRASG12D with either functional LKB1 (KRASG12D/LKB1wt) or mutated LKB1 (KRASG12D/LKB1mut). Once stabilized in vitro, these cell lines were inoculated subcutaneously and intramuscularly into immunocompetent mice. Additionally, a patient-derived xenograft (PDX) model was established by directly implanting tumor fragments from patient into immunocompromised mice. The mice bearing these tumor models were subjected to treatment with chemotherapy or chemo-immunotherapy, both as standalone regimens and in combination with metformin and CR.
    RESULTS: Our preclinical results indicate that in NSCLC KRASmut/LKB1mut tumors, metformin and CR do enhance the response to chemo and chemo-immunotherapy, inducing a metabolic stress condition that these tumors are not able to overcome. Analysis of immune infiltrating cells did not bring to light any strong correlation between the TME immune-modulation and the tumor response to metformin and CR.
    CONCLUSION: Our in vitro and in vivo preliminary studies confirm our hypothesis that the addition of metformin and CR is able to improve the antitumor activity of chemo and chemoimmunotherapy in LKB1 impaired tumors, exploiting their inability to overcome metabolic stress.
    Keywords:  Caloric restriction; Cancer metabolism; KRAS; LKB1; Metformin; NSCLC
  7. Cell Metab. 2024 Jan 02. pii: S1550-4131(23)00464-3. [Epub ahead of print]36(1): 116-129.e7
      Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.
    Keywords:  MASLD; SHMT; acetaminophen hepatotoxicity; glutathione; glycine; one-carbon metabolism; xenobiotic
  8. Cell Metab. 2024 Jan 02. pii: S1550-4131(23)00463-1. [Epub ahead of print]36(1): 1-3
      Tumor-associated myeloid cells (TAMCs) are the predominant immune population in glioblastoma (GBM), but the definite role of TAMCs in GBM tumorigenicity remains uncertain. In this issue of Cell Metabolism, Rashidi et al. identify a specific population of TAMCs surrounding hypoxic regions of GBM. These TAMCs provide creatine to nearby tumor cells to promote GBM progression.
  9. Cell Rep. 2024 Jan 03. pii: S2211-1247(23)01654-6. [Epub ahead of print]43(1): 113643
      CD73-derived adenosine suppresses anti-cancer immunity, and CD73 inhibitors are currently evaluated in several clinical trials. Here, we have assessed enzyme kinetics of all key purinergic ectoenzymes in five cancer cell lines (Hodgkin lymphoma, multiple myeloma, pancreas adenocarcinoma, urinary bladder carcinoma, and glioblastoma) under normoxia and hypoxia. We found that adenosine metabolism varied considerably between individual cancer types. All cell lines investigated exhibited high ecto-adenosine deaminase (ADA) activity, which critically influenced the kinetics of adenosine accumulation. Combining kinetics data with single-cell RNA sequencing data on myeloma and glioblastoma cancerous tissue revealed that purine metabolism is not homogeneously organized, but it differs in a cancer type-specific fashion between malignant cells, stromal cells, and immune cells. Since purine metabolism in cancerous tissue is most likely spatially heterogeneous and differs between the various cell types, diffusion distances in the microenvironment as well as ADA activity may be important variables that influence the level of bioactive adenosine.
    Keywords:  CP: Cancer; NAD; adenosine; adenosine deaminase; glioblastoma; hypoxia; multiple myeloma
  10. Mol Cell Biochem. 2024 Jan 04.
      Esophageal cancer (EC) is a familiar digestive tract tumor with highly lethal. The hypoxic environment has been demonstrated to be a significant factor in modulating malignant tumor progression and is strongly associated with the abnormal energy metabolism of tumor cells. Serine hydroxymethyl transferase 2 (SHMT2) is one of the most frequently expressed metabolic enzymes in human malignancies. The study was designed to investigate the biological functions and regulation mechanisms of SHMT2 in EC under hypoxia. We conducted RT-qPCR to assess SHMT2 levels in EC tissues and cells (TE-1 and EC109). EC cells were incubated under normoxia and hypoxia, respectively, and altered SHMT2 expression was evaluated through RT-qPCR, western blot, and immunofluorescence. The biological functions of SHMT2 on EC cells were monitored by performing CCK-8, EdU, transwell, sphere formation, glucose uptake, and lactate production assays. The SHMT2 protein lactylation was measured by immunoprecipitation and western blot. In addition, SHMT2-interacting proteins were analyzed by bioinformatics and validated by rescue experiments. SHMT2 was notably upregulated in EC tissues and cells. Hypoxia elevated SHMT2 protein expression, augmenting EC cell proliferation, migration, invasion, stemness, and glycolysis. In addition, hypoxia triggered lactylation of the SHMT2 protein and enhanced its stability. SHMT2 knockdown impeded the malignant phenotype of EC cells. Further mechanistic studies disclosed that SHMT2 is involved in EC progression by interacting with MTHFD1L. Hypoxia-induced SHMT2 protein lactylation and upregulated its protein level, which in turn enhanced MTHFD1L expression and accelerated the malignant progression of EC cells.
    Keywords:  EC; Glycolysis; Hypoxia; Lactylation; SHMT2; Stemness
  11. bioRxiv. 2023 Dec 17. pii: 2023.12.16.572007. [Epub ahead of print]
      Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. The cystine/glutamate antiporter, system x c - , is one of the >200 cytoprotective proteins controlled by NRF2, which can be non-invasively imaged by ( S )-4-(3- 18 F-fluoropropyl)-ʟ-glutamate ([ 18 F]FSPG) positron emission tomography (PET). Through genetic and pharmacologic manipulation, we show that [ 18 F]FSPG provides a sensitive and specific marker of NRF2 activation in advanced preclinical models of NSCLC. We validate imaging readouts with metabolomic measurements of system x c - activity and their coupling to intracellular glutathione concentration. A redox gene signature was measured in patients from the TRACERx 421 cohort, suggesting an opportunity for patient stratification prior to imaging. Furthermore, we reveal that system x c - is a metabolic vulnerability that can be therapeutically targeted for sustained tumour growth suppression in aggressive NSCLC. Our results establish [ 18 F]FSPG as predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.