bims-tumime Biomed News
on Tumor microenvironment and metabolism
Issue of 2023–11–12
ten papers selected by
Alex Muir, University of Chicago



  1. Cancer Discov. 2023 Nov 07.
      Nutritional factors play crucial roles in immune responses. The tumor-caused nutritional deficiencies are known to affect anti-tumor immunity. Here, we demonstrate that pancreatic ductal adenocarcinoma (PDAC) cells can suppress NK cell cytotoxicity by restricting the accessibility of vitamin B6 (VB6). PDAC cells actively consume VB6 to support one-carbon metabolism, and thus tumor cell growth, causing VB6 deprivation in the tumor microenvironment. In comparison, NK cells require VB6 for intracellular glycogen breakdown, which serves as a critical energy source for NK cell activation. VB6 supplementation in combination with one-carbon metabolism blockage effectively diminishes tumor burden in vivo. Our results expand the understanding of the critical role of micronutrients in regulating cancer progression and anti-tumor immunity, and open new avenues for developing novel therapeutic strategies against PDAC.
    DOI:  https://doi.org/10.1158/2159-8290.CD-23-0334
  2. Cancer Discov. 2023 Nov 10. OF1
      UXS1-mediated clearance of the sugar nucleotide UDPGA is a specific vulnerability of cancer cells.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2023-178
  3. Semin Cancer Biol. 2023 Nov 04. pii: S1044-579X(23)00135-9. [Epub ahead of print]97 12-20
      Obesity is a prominent health issue worldwide and directly impacts pancreatic health, with obese individuals exhibiting a significant risk for increasing pancreatic ductal adenocarcinoma (PDAC). Several factors potentially explain the increased risk for the development of PDAC, including obesity-induced chronic inflammation within and outside of the pancreas, development of insulin resistance and metabolic dysfunction, promotion of immune suppression within the pancreas during inflammation, pre- and malignant stages, variations in hormones levels (adiponectin, ghrelin, and leptin) produced from the adipose tissue, and acquisition of somatic mutations in tumor once- and suppressor proteins critical for pancreatic tumorigenesis. In this manuscript, we will explore the broad impact of these obesity-induced risk factors on the development and progression of PDAC, focusing on changes within the tumor microenvironment (TME) as they pertain to prevention, current therapeutic strategies, and future directions for targeting obesity management as they relate to the prevention of pancreatic tumorigenesis.
    Keywords:  Genetic alteration; Insulin resistance; Obesity; Pancreatic ductal adenocarcinoma; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.semcancer.2023.11.002
  4. NPJ Precis Oncol. 2023 Nov 03. 7(1): 115
      In this study, we investigated the metabolic alterations associated with clinical response to chemotherapy in patients with ovarian cancer. Pre- and post-neoadjuvant chemotherapy (NACT) tissues from patients with high-grade serous ovarian cancer (HGSC) who had poor response (PR) or excellent response (ER) to NACT were examined. Desorption electrospray ionization mass spectrometry (DESI-MS) was performed on sections of HGSC tissues collected according to a rigorous laparoscopic triage algorithm. Quantitative MS-based proteomics and phosphoproteomics were performed on a subgroup of pre-NACT samples. Highly abundant metabolites in the pre-NACT PR tumors were related to pyrimidine metabolism in the epithelial regions and oxygen-dependent proline hydroxylation of hypoxia-inducible factor alpha in the stromal regions. Metabolites more abundant in the epithelial regions of post-NACT PR tumors were involved in the metabolism of nucleotides, and metabolites more abundant in the stromal regions of post-NACT PR tumors were related to aspartate and asparagine metabolism, phenylalanine and tyrosine metabolism, nucleotide biosynthesis, and the urea cycle. A predictive model built on ions with differential abundances allowed the classification of patients' tumor responses as ER or PR with 75% accuracy (10-fold cross-validation ridge regression model). These findings offer new insights related to differential responses to chemotherapy and could lead to novel actionable targets.
    DOI:  https://doi.org/10.1038/s41698-023-00454-0
  5. Nat Metab. 2023 Nov 09.
    CRUK Rosetta Grand Challenge Consortium
      Tumors are intrinsically heterogeneous and it is well established that this directs their evolution, hinders their classification and frustrates therapy1-3. Consequently, spatially resolved omics-level analyses are gaining traction4-9. Despite considerable therapeutic interest, tumor metabolism has been lagging behind this development and there is a paucity of data regarding its spatial organization. To address this shortcoming, we set out to study the local metabolic effects of the oncogene c-MYC, a pleiotropic transcription factor that accumulates with tumor progression and influences metabolism10,11. Through correlative mass spectrometry imaging, we show that pantothenic acid (vitamin B5) associates with MYC-high areas within both human and murine mammary tumors, where its conversion to coenzyme A fuels Krebs cycle activity. Mechanistically, we show that this is accomplished by MYC-mediated upregulation of its multivitamin transporter SLC5A6. Notably, we show that SLC5A6 over-expression alone can induce increased cell growth and a shift toward biosynthesis, whereas conversely, dietary restriction of pantothenic acid leads to a reversal of many MYC-mediated metabolic changes and results in hampered tumor growth. Our work thus establishes the availability of vitamins and cofactors as a potential bottleneck in tumor progression, which can be exploited therapeutically. Overall, we show that a spatial understanding of local metabolism facilitates the identification of clinically relevant, tractable metabolic targets.
    DOI:  https://doi.org/10.1038/s42255-023-00915-7
  6. Cancer Immunol Immunother. 2023 Nov 08.
      Renal cell carcinoma is an immunogenic tumour with a prominent dysfunctional immune cell infiltrate, unable to control tumour growth. Although tyrosine kinase inhibitors and immunotherapy have improved the outlook for some patients, many individuals are non-responders or relapse despite treatment. The hostile metabolic environment in RCC affects the ability of T-cells to maintain their own metabolic programme constraining T-cell immunity in RCC. We investigated the phenotype, function and metabolic capability of RCC TILs correlating this with clinicopathological features of the tumour and metabolic environment at the different disease stages. Flow cytometric analysis of freshly isolated TILs showed the emergence of exhausted T-cells in advanced disease based on their PD-1high and CD39 expression and reduced production of inflammatory cytokines upon in vitro stimulation. Exhausted T-cells from advanced stage disease also displayed an overall phenotype of metabolic insufficiency, characterized by mitochondrial alterations and defects in glucose uptake. Nanostring nCounter cancer metabolism assay on RNA obtained from 30 ccRCC cases revealed significant over-expression of metabolic genes even at early stage disease (pT1-2), while at pT3-4 and the locally advanced thrombi stages, there was an overall decrease in differentially expressed metabolic genes. Notably, the gene PPARGC1A was the most significantly down-regulated gene from pT1-2 to pT3-4 RCC which correlated with loss of mitochondrial function in tumour-infiltrating T-cells evident at this tumour stage. Down-regulation of PPARGC1A into stage pT3-4 may be the 'tipping-point' in RCC disease progression, modulating immune activity in ccRCC and potentially reducing the efficacy of immunotherapies in RCC and poorer patient outcomes.
    Keywords:  Renal Cell carcinoma; T-cell exhaustion metabolic
    DOI:  https://doi.org/10.1007/s00262-023-03558-5
  7. Nat Commun. 2023 Nov 08. 14(1): 7211
      Efficacy of cancer vaccines remains low and mechanistic understanding of antigen presenting cell function in cancer may improve vaccine design and outcomes. Here, we analyze the transcriptomic and immune-metabolic profiles of Dendritic Cells (DCs) from 35 subjects enrolled in a trial of DC vaccines in late-stage melanoma (NCT01622933). Multiple platforms identify metabolism as an important biomarker of DC function and patient overall survival (OS). We demonstrate multiple immune and metabolic gene expression pathway alterations, a functional decrease in OCR/OXPHOS and increase in ECAR/glycolysis in patient vaccines. To dissect molecular mechanisms, we utilize single cell SCENITH functional profiling and show patient clinical outcomes (OS) correlate with DC metabolic profile, and that metabolism is linked to immune phenotype. With single cell metabolic regulome profiling, we show that MCT1 (monocarboxylate transporter-1), a lactate transporter, is increased in patient DCs, as is glucose uptake and lactate secretion. Importantly, pre-vaccination circulating myeloid cells in patients used as precursors for DC vaccine generation are significantly skewed metabolically as are several DC subsets. Together, we demonstrate that the metabolic profile of DC is tightly associated with the immunostimulatory potential of DC vaccines from cancer patients. We link phenotypic and functional metabolic changes to immune signatures that correspond to suppressed DC differentiation.
    DOI:  https://doi.org/10.1038/s41467-023-42881-4
  8. Cancer Res. 2023 11 07.
      Increased utilization of glucose is a hallmark of cancer. Sodium-glucose transporter 2 (SGLT2) is a critical player in glucose uptake in early-stage and well-differentiated lung adenocarcinoma (LUAD). SGLT2 inhibitors, which are FDA-approved for diabetes, heart failure, and kidney disease, have been shown to significantly delay LUAD development and prolong survival in murine models and in retrospective studies in diabetic patients, suggesting that they may be re-purposed for lung cancer. Despite the anti-tumor effects of SGLT2 inhibition, tumors eventually escape treatment. Here, we studied the mechanisms of resistance to glucose metabolism-targeting treatments. Glucose restriction in LUAD and other tumors induced cancer cell de-differentiation, leading to a more aggressive phenotype. Glucose deprivation caused a reduction in alpha-ketoglutarate (αKG), leading to attenuated activity of αKG-dependent histone demethylases and histone hypermethylation. The de-differentiated phenotype depended on unbalanced EZH2 activity that suppressed prolyl-hydroxylase PHD3 and increased expression of hypoxia inducible factor 1α (HIF1α), triggering epithelial-to-mesenchymal transition. Finally, a HIF1α-dependent transcriptional signature of genes up-regulated by low glucose correlated with prognosis in human LUAD. Overall, this study furthers current knowledge of the relationship between glucose metabolism and cell differentiation in cancer, characterizing the epigenetic adaptation of cancer cells to glucose deprivation and identifying targets to prevent the development of resistance to therapies targeting glucose metabolism.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-23-1148
  9. EMBO Rep. 2023 Nov 06. e57339
      Breast adipose tissue is an important contributor to the obesity-breast cancer link. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we find that long-term education of breast cancer cells with EVs obtained from breast adipose tissue of women who are overweight or obese (O-EVs) results in increased proliferation. RNA-seq analysis of O-EV-educated cells demonstrates increased expression of genes involved in oxidative phosphorylation, such as ATP synthase and NADH: ubiquinone oxidoreductase. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. The mitochondrial complex I inhibitor metformin reverses O-EV-induced cell proliferation. Several miRNAs-miR-155-5p, miR-10a-3p, and miR-30a-3p-which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing metabolic reprogramming of breast cancer cells.
    Keywords:  breast cancer; extracellular vesicles; mitochondrial respiration; obesity; proliferation
    DOI:  https://doi.org/10.15252/embr.202357339
  10. Sci Immunol. 2023 Nov 10. 8(89): eabn8531
      Mucosal-associated invariant T (MAIT) cells are a subset of T lymphocytes that respond to microbial metabolites. We defined MAIT cell populations in different organs and characterized the developmental pathway of mouse and human MAIT cells in the thymus using single-cell RNA sequencing and phenotypic and metabolic analyses. We showed that the predominant mouse subset, which produced IL-17 (MAIT17), and the subset that produced IFN-γ (MAIT1) had not only greatly different transcriptomes but also different metabolic states. MAIT17 cells in different organs exhibited increased lipid uptake, lipid storage, and mitochondrial potential compared with MAIT1 cells. All these properties were similar in the thymus and likely acquired there. Human MAIT cells in lung and blood were more homogeneous but still differed between tissues. Human MAIT cells had increased fatty acid uptake and lipid storage in blood and lung, similar to human CD8 T resident memory cells, but unlike mouse MAIT17 cells, they lacked increased mitochondrial potential. Although mouse and human MAIT cell transcriptomes showed similarities for immature cells in the thymus, they diverged more strikingly in the periphery. Analysis of pet store mice demonstrated decreased lung MAIT17 cells in these so-called "dirty" mice, indicative of an environmental influence on MAIT cell subsets and function.
    DOI:  https://doi.org/10.1126/sciimmunol.abn8531