bims-tumhet Biomed News
on Tumor Heterogeneity
Issue of 2024–11–24
six papers selected by
Sergio Marchini, Humanitas Research



  1. Eur J Cancer. 2024 Oct 30. pii: S0959-8049(24)01713-1. [Epub ahead of print]213 115106
      Cancer drugs have accumulated the most approvals over the past years. Overall survival (OS) is considered the gold standard for cancer trial outcomes. However, its use has declined over the past years, in favor of surrogate endpoints, such as progression-free survival (PFS). PFS allows to assess outcomes earlier and, thus, accelerates approval of cancer drugs. Previous studies have demonstrated a poor correlation between PFS and OS. Using simulation models, we examined why PFS usually overestimates survival benefit. We created a publicly accessible web application that allows users to run the simulations with different parameter settings. Based on the findings, we propose that assessment of preliminary evidence should be based on a combination of OS result and prognostic scores that reflect the health status of surviving patients.
    Keywords:  Clinical trials; Overall survival; Predicted survival times; Progression-free survival
    DOI:  https://doi.org/10.1016/j.ejca.2024.115106
  2. Carcinogenesis. 2024 Nov 16. pii: bgae073. [Epub ahead of print]
      Ultra-low-pass whole-genome sequencing (ULP-WGS) (≤0.5× coverage) of plasma cell-free DNA (cfDNA) has emerged as a low-cost promising tool to assess circulating tumor DNA (ctDNA) fraction. This meta-analysis aims to summarize the current findings and comprehensively investigate the prognostic value of baseline ctDNA detected by ULP-WGS in solid tumors. A systematic review was carried out by searching PubMed/MEDLINE and Scopus databases to identify eligible studies conducted between January 2014 and January 2024. Inclusion criteria comprised studies with reported overall survival (OS) and progression-free survival (PFS) outcomes across therapy-naïve patients with different solid tumors. All patients underwent baseline ULP-WGS of plasma cfDNA and were categorized as ctDNA positive (tumor fraction ≥10%) or negative (tumor fraction <10%). A one-stage meta-analysis was performed using patient-level survival data reconstructed from published articles. A Cox proportional hazards model with shared frailty was used to assess the difference in survival between arms. A total of six studies, comprising 620 patients (367 negative ctDNA and 253 positive ctDNA), were included in the OS analysis, while five studies, involving 349 patients (212 negative ctDNA and 137 positive ctDNA), were included in the PFS analysis. The meta-analysis showed that patients with baseline positive ctDNA had a significantly higher risk of death (HR = 2.60, 95% CI: 2.01-3.36) and disease progression (HR = 2.28, 95% CI: 1.71-3.05) compared to those with negative ctDNA. The presence of a positive ctDNA at baseline is associated with increased risk of death and progression in patients with same stage cancer.
    Keywords:  Circulating tumor DNA; Whole Genome Sequencing; overall survival; patient level meta-analysis; progression-free survival
    DOI:  https://doi.org/10.1093/carcin/bgae073
  3. bioRxiv. 2024 Nov 04. pii: 2024.10.30.621013. [Epub ahead of print]
      DNA methylation serves as a powerful biomarker for disease diagnosis and biological age assessment. However, current analytical approaches often rely on linear models that cannot capture the complex, context-dependent nature of methylation regulation. Here we present MethylGPT, a transformer-based foundation model trained on 226,555 (154,063 after QC and deduplication) human methylation profiles spanning diverse tissue types from 5,281 datasets, curated 49,156 CpG sites, and 7.6 billion training tokens. MethylGPT learns biologically meaningful representations of CpG sites, capturing both local genomic context and higher-order chromosomal features without external supervision. The model demonstrates robust methylation value prediction (Pearson R=0.929) and maintains stable performance in downstream tasks with up to 70% missing data. Applied to age prediction across multiple tissue types, MethylGPT achieves superior accuracy compared to existing methods. Analysis of the model's attention patterns reveals distinct methylation signatures between young and old samples, with differential enrichment of developmental and aging-associated pathways. When finetuned to mortality and disease prediction across 60 major conditions using 18,859 samples from Generation Scotland, MethylGPT achieves robust predictive performance and enables systematic evaluation of intervention effects on disease risks, demonstrating potential for clinical applications. Our results demonstrate that transformer architectures can effectively model DNA methylation patterns while preserving biological interpretability, suggesting broad utility for epigenetic analysis and clinical applications.
    DOI:  https://doi.org/10.1101/2024.10.30.621013
  4. Annu Rev Med. 2024 Nov 21.
      Circulating tumor DNA (ctDNA), often referred to as a liquid biopsy, represents a promising biomarker in the management of both localized and advanced solid tumors. It has garnered significant attention due to its potential to inform prognosis and guide therapeutic decisions. The clinical utility of ctDNA spans early cancer detection, minimal residual disease identification, recurrence surveillance, treatment monitoring, and precision oncology treatment decision-making in the advanced setting. Unlike conventional radiological assessments, the short half-life of ctDNA allows for more timely insights into disease dynamics. Several technological approaches are available to measure ctDNA, including next-generation sequencing and droplet digital polymerase chain reaction, although their clinical accuracy depends on multiple biological and technical factors. This review evaluates current evidence surrounding ctDNA's utility in early and advanced solid tumors.
    DOI:  https://doi.org/10.1146/annurev-med-100223-090016
  5. Sci Rep. 2024 11 19. 14(1): 28573
      Ovarian cancer (OC) is one of the most common cancers in women, with a high mortality rate. Most of published studies have been focused on Caucasian populations, with the need to explore biological features and clinical outcomes of patients from other ethnicities. We described clinical outcome (progression-free survival and overall survival) and biomarkers associated with survival in a cohort of patients with OC from Tunisia. Using immunohistochemistry, we assessed the expression of 14 proteins known to be altered in OC in a cohort of 198 patients. We explored the correlation between protein expression and copy number alteration (CNA) profiles. FIGO stage, menopausal status and mismatch repair deficiency were associated with survival. ERBB2 amplification was correlated with high ERBB2 expression (OR = 69.32, p = 4.03 E-09), and high PDL1 expression was associated to CD274 amplification (OR = 4.97, p = 5.79 E-2). We identified a correlation between survival and exposure to two CNA signatures (MAPK pathway and BRCA-related homologous recombination deficiency). Moreover, Gama-H2AX protein expression was correlated with exposure to a genomic signature associated with homologous recombination deficiency. We observed that OC clinical and pathological characteristics of these patients from Tunisia were similar to those of Caucasian patients. We identified frequent CNA in this population that need to be confirmed in other sets from Africa.
    Keywords:  Copy number alterations; Ovarian cancer; Survival.; Tissue micro-array
    DOI:  https://doi.org/10.1038/s41598-024-80030-z
  6. Nat Commun. 2024 Nov 22. 15(1): 10144
      Single-cell RNA sequencing (scRNAseq) of tumour-infiltrating immune cells in high-grade serous ovarian cancer (HGSOC) omental biopsies reveals potential targets that could enhance response to neo-adjuvant chemotherapy (NACT). Analysis of 64,097 cells identifies NACT-induced overexpression of stabilin-1 (clever-1) on macrophages and FOXP3 in Tregs that is confirmed at the protein level. STAB1 inhibition in vitro induces anti-tumour macrophages. FOXP3 anti-sense oligonucleotide (FOXP3-ASO), repolarises Tregs to an effector T cell phenotype. ScRNAseq on 69,781 cells from an HGSOC syngeneic mouse model recapitulates the patients' data. Combining chemotherapy with anti-stabilin1 antibody and/or Foxp3-ASO significantly increases survival of mice with established peritoneal disease in two HGSOC syngeneic models and progression-free survival in a third model. Long-term survivors (300 days + ) are resistant to tumour rechallenge. Anti-stabilin1 antibody enriches the tumours with CXCL9+ macrophages and Foxp3-ASO increases TBET cell infiltration. Our results suggest that targeting these molecules in immune cells may improve chemotherapy response in patients.
    DOI:  https://doi.org/10.1038/s41467-024-54295-x