bims-tumhet Biomed News
on Tumor Heterogeneity
Issue of 2024–04–28
three papers selected by
Sergio Marchini, Humanitas Research



  1. Clin Cancer Res. 2024 Apr 26.
       PURPOSE: Immune tumor microenvironment (iTME) determines ovarian cancer development. This study investigates changes in HLA-I expression, CD8+/Foxp3 ratio, CD8+ cells and coregulators density at diagnosis and upon neoadjuvant chemotherapy (NACT), correlating changes with clinical outcomes.
    EXPERIMENTAL DESIGN: Multiplexed immune profiling and cell clustering analysis was performed on paired matched OC samples to characterize the iTME at diagnosis and under NACT from patients enrolled in the CHIVA trial (NCT01583322).
    RESULTS: Several immune cells (IC) subsets and immune coregulators were quantified pre-/post-NACT. At diagnosis, patients with higher CD8+ T cells and HLA-1+ enriched tumors were associated with -better outcome. The CD8+/Foxp3+ ratio increased significantly post-NACT in favor of increased immune surveillance and the influx of CD8+ T cells predicted better outcomes. Clustering analysis stratified pre-NACT tumors into 4 subsets: high Binf, enriched in B clusters; high Tinf, low Tinf, according to their CD8+ density; and desert clusters. At baseline, these clusters were not correlated with patient outcomes. Under NACT, tumors segregated into 3 clusters: high BinfTinf, low Tinf and desert. The high BinfTinf, more diverse in IC composition encompassing T, B and NK cell, correlated with improved survival. PD-L1 was rarely expressed, while TIM-3, LAG- and IDO-1 were more prevalent.
    CONCLUSIONS: Several iTMEs exist during tumor evolution and NACT impact on iTME is heterogeneous. Clustering analysis of patients, unravels several IC subsets within OC and can guide future personalized approaches. Targeting different checkpoints such as TIM-3, LAG-3 and IDO-1, more prevalent than PD-L1, could more effectively harness anti-tumor immunity in this anti-PD-L1 resistant malignancy.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-23-3836
  2. Int J Gynecol Cancer. 2024 Apr 23. pii: ijgc-2024-005313. [Epub ahead of print]
       OBJECTIVES: Circulating tumor DNA (ctDNA) is emerging as a potential prognostic biomarker in multiple tumor types. However, despite the many studies available on small series of patients with ovarian cancer, a recent systematic review and meta-analysis is lacking. The objective of this study was to determine the association of ctDNA with progression-free-survival and overall survival in patients with epithelial ovarian cancer.
    METHODS: An electronic search was conducted using PubMed (MEDLINE), Embase, CENTRAL (Cochrane Library), and CINAHL-Complete from January 2000 to September 15, 2023. To be included in the analysis the studies had to meet the following pre-specified inclusion criteria: (1) evaluable ctDNA; (2) progression-free-survival and overall survival reported as hazard ratio (HR); and (3) the patient population had epithelial ovarian cancer at the time of ctDNA detection. We evaluated the association of ctDNA with progression-free survival and overall survival. Secondary outcomes focused on sub-group analysis of genomic alterations and international Federation of Gynecology and Obstetrics (FIGO) stage.
    RESULTS: A total of 26 studies reporting on 1696 patients with epithelial ovarian cancer were included. The overall concordance rate between plasma-based and tissue-based analyses was approximately 62%. We found that a high level of ctDNA in epithelial ovarian cancer was associated with worse progression-free survival (HR 5.31, 95% CI 2.14 to 13.17, p<0.001) and overall survival (HR 2.98, 95% CI 1.86 to 4.76, p<0.0001). The sub-group analysis showed a greater than threefold increase in the risk of relapse in patients with positive HOXA9 meth-ctDNA (HR 3.84, 95% CI 1.57 to 9.41, p=0.003).
    CONCLUSIONS: ctDNA was significantly associated with worse progression-free survival and overall survival in patients with epithelial ovarian cancer. Further prospective studies are needed.
    PROSPERO REGISTRATION NUMBER: CRD42023469390.
    Keywords:  Carcinoma, Ovarian Epithelial; Gynecologic Surgical Procedures; Gynecology; Neoplasm Recurrence, Local; Ovarian Neoplasms
    DOI:  https://doi.org/10.1136/ijgc-2024-005313
  3. Nat Med. 2024 Apr 23.
      Programmed death-1 (PD-1) inhibitors are approved for therapy of gynecologic cancers with DNA mismatch repair deficiency (dMMR), although predictors of response remain elusive. We conducted a single-arm phase 2 study of nivolumab in 35 patients with dMMR uterine or ovarian cancers. Co-primary endpoints included objective response rate (ORR) and progression-free survival at 24 weeks (PFS24). Secondary endpoints included overall survival (OS), disease control rate (DCR), duration of response (DOR) and safety. Exploratory endpoints included biomarkers and molecular correlates of response. The ORR was 58.8% (97.5% confidence interval (CI): 40.7-100%), and the PFS24 rate was 64.7% (97.5% one-sided CI: 46.5-100%), meeting the pre-specified endpoints. The DCR was 73.5% (95% CI: 55.6-87.1%). At the median follow-up of 42.1 months (range, 8.9-59.8 months), median OS was not reached. One-year OS rate was 79% (95% CI: 60.9-89.4%). Thirty-two patients (91%) had a treatment-related adverse event (TRAE), including arthralgia (n = 10, 29%), fatigue (n = 10, 29%), pain (n = 10, 29%) and pruritis (n = 10, 29%); most were grade 1 or grade 2. Ten patients (29%) reported a grade 3 or grade 4 TRAE; no grade 5 events occurred. Exploratory analyses show that the presence of dysfunctional (CD8+PD-1+) or terminally dysfunctional (CD8+PD-1+TOX+) T cells and their interaction with programmed death ligand-1 (PD-L1)+ cells were independently associated with PFS24. PFS24 was associated with presence of MEGF8 or SETD1B somatic mutations. This trial met its co-primary endpoints (ORR and PFS24) early, and our findings highlight several genetic and tumor microenvironment parameters associated with response to PD-1 blockade in dMMR cancers, generating rationale for their validation in larger cohorts.ClinicalTrials.gov identifier: NCT03241745 .
    DOI:  https://doi.org/10.1038/s41591-024-02942-7