bims-tumhet Biomed News
on Tumor Heterogeneity
Issue of 2023–09–24
three papers selected by
Sergio Marchini, Humanitas Research



  1. Drugs. 2023 Sep 22.
      Ovarian cancer is the leading cause of gynecological cancer death. Improved understanding of the biologic pathways and introduction of poly (ADP-ribose) polymerase inhibitors (PARPi) during the last decade have changed the treatment landscape. This has improved outcomes, but unfortunately half the women with ovarian cancer still succumb to the disease within 5 years of diagnosis. Pathways of resistance to PARPi and chemotherapy have been studied extensively, but there is an unmet need to overcome treatment failure and improve outcome. Major mechanisms of PARPi resistance include restoration of homologous recombination repair activity, alteration of PARP function, stabilization of the replication fork, drug efflux, and activation of alternate pathways. These resistant mechanisms can be targeted to sensitize the resistant ovarian cancer cells either by rechallenging with PARPi, overcoming resistance mechanism or bypassing resistance pathways. Augmenting the PARPi activity by combining it with other targets in the DNA damage response pathway, antiangiogenic agents and immune checkpoint inhibitors can potentially overcome the resistance mechanisms. Methods to bypass resistance include targeting non-cross-resistant pathways acting independent of homologous recombination repair (HRR), modulating tumour microenvironment, and enhancing drug delivery systems such as antibody drug conjugates. In this review, we will discuss the first-line management of ovarian cancer, resistance mechanisms and potential strategies to overcome these.
    DOI:  https://doi.org/10.1007/s40265-023-01934-0
  2. Chromosome Res. 2023 Sep 18. 31(4): 28
      Aneuploidy is defined as the cellular state of having a number of chromosomes that deviates from a multiple of the normal haploid chromosome number of a given organism. Aneuploidy can be present in a static state: Down syndrome individuals stably maintain an extra copy of chromosome 21 in their cells. In cancer cells, however, aneuploidy is usually present in combination with chromosomal instability (CIN) which leads to a continual generation of new chromosomal alterations and the development of intratumour heterogeneity (ITH). The prevalence of cells with specific chromosomal alterations is further shaped by evolutionary selection, for example, during the administration of cancer therapies. Aneuploidy, CIN and ITH have each been individually associated with poor prognosis in cancer, and a wealth of evidence suggests they contribute, either alone or in combination, to cancer therapy resistance by providing a reservoir of potential resistant states, or the ability to rapidly evolve resistance. A full understanding of the contribution and interplay between aneuploidy, CIN and ITH is required to tackle therapy resistance in cancer patients. However, these characteristics often co-occur and are intrinsically linked, presenting a major challenge to defining their individual contributions. Moreover, their accurate measurement in both experimental and clinical settings is a technical hurdle. Here, we attempt to deconstruct the contribution of the individual and combined roles of aneuploidy, CIN and ITH to therapy resistance in cancer, and outline emerging approaches to measure and disentangle their roles as a step towards integrating these principles into cancer therapeutic strategy.
    Keywords:  Aneuploidy; cancer; chromosomal instability; intratumour heterogeneity; therapy resistance; tumour evolution
    DOI:  https://doi.org/10.1007/s10577-023-09737-5
  3. Annu Rev Med. 2023 Sep 20.
      The new generation of cancer early detection tests holds remarkable promise for revolutionizing and changing the paradigm of cancer early detection. Dozens of cancer early detection tests are being developed and evaluated. Some are already commercialized and available for use, most as a complement to and not in place of existing recommended cancer screening tests. This review evaluates existing single- and multi-cancer early detection tests (MCEDs), discussing their performance characteristics including sensitivity, specificity, positive and negative predictive values, and accuracy. It also critically looks at the potential harms that could result from these tests, including false positive and negative results, the risk of overdiagnosis and overtreatment, psychological and economic harms, and the risk of widening cancer inequities. We also review the large-scale, population-based studies that are being launched in the United States and United Kingdom to determine the impact of MCEDs on clinically relevant outcomes and implications for current practice. Expected final online publication date for the Annual Review of Medicine, Volume 75 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    DOI:  https://doi.org/10.1146/annurev-med-050522-033624