bims-tumhet Biomed News
on Tumor Heterogeneity
Issue of 2023‒09‒10
two papers selected by
Sergio Marchini, Humanitas Research



  1. J Cancer Res Clin Oncol. 2023 Sep 06.
      PURPOSE: Homologous recombination deficiency (HRD) plays a crucial role in ovarian cancer patients who are treated with Poly (ADP-ribose) polymerase inhibitors (PARPis). It could be defined as a prognosis biomarker. However, many high throughput sequencing methods for evaluating HRD, including HRDetect (WGS 10X), SigMA (WGS 40X or panel 1000X), and scarHRD (WGS 30X), are technically complex, time and data-storage consuming, and costly. Herein, we aimed to develop a low-cost method by low sequencing coverage to identify HRD status for precision medication.METHODS: We utilized ShallowHRD, a software tool to evaluate tumor HRD based on whole genome sequencing (WGS) at low coverage (1X), and established a novel scoring system, ShallowHRD score system.
    RESULTS: Compared with negative ShallowHRD status (ShallowHRD score < 15 or BRCAwild), positive ShallowHRD status (ShallowHRD score ≥ 15 or BRCAmut) presented favorable survival after being treated with PARPis.
    CONCLUSION: The ShallowHRD status is a good biomarker for predicting prognosis, which could help guide the clinical application of PARPis in ovarian cancer patients by a cost-effective, time and data-storage saving method.
    Keywords:  Homologous recombination deficiency; Ovarian cancer; PARPis; ShallowHRD; Whole genome sequencing
    DOI:  https://doi.org/10.1007/s00432-023-05341-6
  2. J Transl Med. 2023 Sep 05. 21(1): 596
      BACKGROUND: Ovarian cancer (OC) is a highly aggressive gynecological malignancy prevalent worldwide. Most OC cases are typically diagnosed at advanced stages, which has led to a 5-year overall survival rate of less than 35% following conventional treatment. Furthermore, immune checkpoint inhibitor therapy has shown limited efficacy in the treatment of patients with OC, and CAR-T therapy has also demonstrated modest results owing to inadequate T cell infiltration. Therefore, novel strategies must be developed to enhance T cell persistence and trafficking within the OC tumor microenvironment.METHODS: In this study, we developed a novel adoptive T-cell therapy for ovarian cancer based on a chimeric antigen receptor structure. We used a ligand-receptor binding motif to enhance the therapeutic effect of targeting CA125. Since mesothelin can naturally bind to CA125 with high affinity, we concatenated the core-binding fragment of mesothelin with the 4-1BB and CD3ζ signal fragments to assemble a novel CA125-targeting chimeric receptor (CR). The CAR structure targeting CA125 derived from the 4H11 antibody was also constructed. CR- and CAR-encoding RNA were electroporated into T cells to evaluate their antitumor activity both in vitro and in vivo.
    RESULTS: While CR-T or CAR-T cells exhibited moderate activity against two ovarian cancer cell lines, T cells co-expressing CR and CAR exhibited a superior killing effect compared to T cells expressing either CR or CAR alone. Furthermore, upon interaction with ovarian tumors, the ability of CR and CAR T cells to release activation markers and functional cytokines increased significantly. Similarly, CR and CAR co-expressing T cells persistently controlled the growth of transplanted ovarian cancer tumors in NSG mice and significantly prolonged the overall survival of tumor-challenged mice. Transcriptome sequencing revealed that the survival and cytotoxicity of T cells co-expressing CR and CAR were significantly altered compared with those of T cells expressing either CR or CAR.
    CONCLUSION: Our findings demonstrate that CA125 targeting CR and CAR can synergistically kill ovarian cancer cells, indicating that CA125 targeting by the two binding motifs simultaneously in tumors may improve the therapeutic outcomes of ovarian cancer treatment.
    Keywords:  CA125; Chimeric antigen receptor (CAR); Chimeric receptor (CR); Mesothelin; Ovarian cancer
    DOI:  https://doi.org/10.1186/s12967-023-04271-8