bims-tumhet Biomed News
on Tumor Heterogeneity
Issue of 2022–04–10
nine papers selected by
Sergio Marchini, Humanitas Research



  1. J Pathol Clin Res. 2022 Apr 05.
      Homologous recombination deficiency (HRD) leads to DNA double-strand breaks and can be exploited by the use of poly (ADP-ribose) polymerase (PARP) inhibitors to induce synthetic lethality. Extending the original therapeutic concept, the role of HRD is currently being investigated in clinical trials testing immune checkpoint blockers alone or in combination with PARP inhibitors, but the relationship between HRD and immune cell context in cancer is incompletely understood. We analyzed the association between immune cell composition, gene expression, and HRD in 9,041 tumors of 32 solid cancer types from The Cancer Genome Atlas (TCGA). The numbers of genomic scars were quantified by the HRD sum score (HRDsum) including loss of heterozygosity, large-scale state transitions, and telomeric allelic imbalance. The T-cell inflamed gene expression profile correlated weakly, but significantly positively, with HRDsum across cancer types (ρ = 0.17). Within individual cancer types, a significantly positive correlation was observed only in breast cancer, ovarian cancer, and four other cancer types, but not in the remaining 26 cancer types. HRDsum and tumor mutational burden (TMB) correlated significantly positively across cancer types (ρ = 0.42) and within 18 cancer types. HRDsum and a proliferation metagene correlated significantly positively across cancer types (ρ = 0.52) and within 20 cancer types. Mismatch repair deficiency and HRD as well as proofreading deficiency showed a high level of exclusivity. High HRD scores were associated with an immunologically activated tumor microenvironment only in a minority of cancer types. Our data favor the combination of genetic markers, complex genomic markers (including HRDsum and TMB), and other molecular markers (including proliferation scores) for a precise and comprehensive read-out of the tumor biology and an individually tailored treatment.
    Keywords:  HRD; MSI; PARP inhibitors; T-cell inflamed gene expression profile; homologous recombination deficiency; immune cell populations; microsatellite instability; tumor mutational burden
    DOI:  https://doi.org/10.1002/cjp2.271
  2. Br J Cancer. 2022 Apr 05.
      Ovarian cancer is the leading cause of mortality due to gynecologic malignancy. The majority of women diagnosed with the most common subtype, high-grade serous ovarian carcinoma (HGSC), develop resistance to conventional therapies despite initial response to treatment. HGSC tumors displaying DNA damage repair (DDR) gene deficiency and high chromosomal instability mainly associate with higher cytotoxic immune cell infiltration and expression of genes associated with these immune pathways. Despite the high level of immune infiltration observed, the majority of patients with HGSC have not benefited from immunomodulatory treatments as the mechanistic basis of this infiltration is unclear. This lack of response can be primarily attributed to heterogeneity at the levels of both cancer cell genetic alterations and the tumour immune microenvironment. Strategies to enhance anti-tumour immunity have been investigated in ovarian cancer, of which interferon activating therapies present as an attractive option. Of the several type I interferon (IFN-1) stimulating therapies, exogenously activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is emerging as a promising avenue. Herein, we highlight our current understanding of how constitutive and induced cGAS-STING pathway activation influences the ovarian tumour microenvironment. We further elaborate on the links between the genomic alterations prevalent in ovarian tumours and how the resultant immune phenotypes can make them more susceptible to exogenous STING pathway activation and potentiate immune-mediated killing of cancer cells. The therapeutic potential of cGAS-STING pathway activation in ovarian cancer and factors implicating treatment outcomes are discussed, providing a rationale for future combinatorial treatment approaches on the backbone of chemotherapy.
    DOI:  https://doi.org/10.1038/s41416-022-01797-4
  3. Semin Cancer Biol. 2022 Apr 05. pii: S1044-579X(22)00083-9. [Epub ahead of print]
      Ovarian cancer encompasses a heterogeneous group of malignancies that involve the ovaries, fallopian tubes and the peritoneal cavity. Despite major advances made within the field of cancer, the majority of patients with ovarian cancer are still being diagnosed at an advanced stage of the disease due to lack of effective screening tools. The overall survival of these patients has, therefore, not substantially improved over the past decades. Most patients undergo debulking surgery and treatment with chemotherapy, but often micrometastases remain and acquire resistance to the therapy, eventually leading to disease recurrence. Here, we summarize the current knowledge in epithelial ovarian cancer development and metastatic progression. For the most common subtypes, we focus further on the properties and functions of the immunosuppressive tumor microenvironment, including the extracellular matrix. Current and future treatment modalities are discussed and finally we provide an overview of the different experimental models used to develop novel therapies.
    Keywords:  Ascites; Extracellular matrix; Immunotherapy; Ovarian cancer; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.semcancer.2022.03.027
  4. Gynecol Oncol. 2022 Mar 31. pii: S0090-8258(22)00200-1. [Epub ahead of print]
       OBJECTIVE: Aberrant DNA methylation is an early event in carcinogenesis which could be leveraged to detect ovarian cancer (OC) in plasma.
    METHODS: DNA from frozen OC tissues, benign fallopian tube epithelium (FTE), and buffy coats from cancer-free women underwent reduced representation bisulfite sequencing (RRBS) to identify OC MDMs. Candidate MDM selection was based on receiver operating characteristic (ROC) discrimination, methylation fold change, and low background methylation among controls. Blinded biological validation was performed using methylated specific PCR on DNA extracted from independent OC and FTE FFPE tissues. MDMs were tested using Target Enrichment Long-probe Quantitative Amplified Signal (TELQAS) assays in pre-treatment plasma from women newly diagnosed with OC and population-sampled healthy women. A random forest modeling analysis was performed to generate predictive probability of disease; results were 500-fold in silico cross-validated.
    RESULTS: Thirty-three MDMs showed marked methylation fold changes (10 to >1000) across all OC subtypes vs FTE. Eleven MDMs (GPRIN1, CDO1, SRC, SIM2, AGRN, FAIM2, CELF2, RIPPLY3, GYPC, CAPN2, BCAT1) were tested on plasma from 91 women with OC (73 (80%) high-grade serous (HGS)) and 91 without OC; the cross-validated 11-MDM panel highly discriminated OC from controls (96% (95% CI, 89-99%) specificity; 79% (69-87%) sensitivity, and AUC 0.91 (0.86-0.96)). Among the 5 stage I/II HGS OCs included, all were correctly identified.
    CONCLUSIONS: Whole methylome sequencing, stringent filtering criteria, and biological validation yielded candidate MDMs for OC that performed with high sensitivity and specificity in plasma. Larger plasma-based OC MDM studies, including testing of pre-diagnostic specimens, are warranted.
    Keywords:  Carcinoma, ovarian epithelial/prevention & control; Cell-free nucleic acids; DNA methylation; Liquid biopsy; Ovarian neoplasm/diagnosis
    DOI:  https://doi.org/10.1016/j.ygyno.2022.03.018
  5. Clin Adv Hematol Oncol. 2022 Apr;20(4): 240-253
      Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy, with poor survival rates among patients who have advanced disease despite recent significant advances in therapy, including therapy targeting the homologous recombination pathway. Evidence that cell-mediated antitumor immunity, as well as documented programmed death ligand 1 expression, is correlated with improved survival in EOC garnered early optimism regarding the utility of immune checkpoint blockade (ICB) in ovarian cancer. However, the results of multiple clinical trials investigating ICB have revealed very low levels of activity of single-agent immune checkpoint inhibitors, and the testing of combination therapies has not yet identified any combinations with robust activity in a significant proportion of patients who have EOC. In this review, we summarize the results of the major studies of ICB monotherapy and combinations; review novel combinations under investigation, including ICB with cellular therapies; and discuss potential candidate biomarkers for improving the selection of patients who may respond to ICB.
  6. Nucleic Acids Res. 2022 Apr 05. pii: gkac200. [Epub ahead of print]
      Haploinsufficiency drives Darwinian evolution. Siblings, while alike in many aspects, differ due to monoallelic differences inherited from each parent. In cancer, solid tumors exhibit aneuploid genetics resulting in hundreds to thousands of monoallelic gene-level copy-number alterations (CNAs) in each tumor. Aneuploidy patterns are heterogeneous, posing a challenge to identify drivers in this high-noise genetic environment. Here, we developed Shifted Weighted Annotation Network (SWAN) analysis to assess biology impacted by cumulative monoallelic changes. SWAN enables an integrated pathway-network analysis of CNAs, RNA expression, and mutations via a simple web platform. SWAN is optimized to best prioritize known and novel tumor suppressors and oncogenes, thereby identifying drivers and potential druggable vulnerabilities within cancer CNAs. Protein homeostasis, phospholipid dephosphorylation, and ion transport pathways are commonly suppressed. An atlas of CNA pathways altered in each cancer type is released. These CNA network shifts highlight new, attractive targets to exploit in solid tumors.
    DOI:  https://doi.org/10.1093/nar/gkac200
  7. Front Cell Dev Biol. 2022 ;10 772701
      Ovarian cancer (OV) is a deadly gynecological cancer. The tumor immune microenvironment (TIME) plays a pivotal role in OV development. However, the TIME of OV is not fully known. Therefore, we aimed to provide a comprehensive network of the TIME in OV. Gene expression data and clinical information from OV patients were obtained from the Cancer Genome Atlas Program (TCGA) database. Non-negative Matrix Factorization, NMFConsensus, and nearest template prediction algorithms were used to perform molecular clustering. The biological functions of differentially expressed genes (DEGs) were identified using Metascape, gene set enrichment analysis (GSEA), gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and tumor mutation burden were analyzed using Gistic 2.0, R package maftools, and TCGA mutations, respectively. Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data and CIBERSORT were utilized to elucidate the TIME. Moreover, external data from the International Cancer Genome Consortium (ICGC) and ArrayExpress databases were used to validate the signature. All 361 samples from the TCGA OV dataset were classified into Immune Class and non-Immune Class with immune signatures. By comparing the two classes, we identified 740 DEGs that accumulated in immune-related, cancer-related, inflammation-related biological functions and pathways. There were significant differences in the CNVs between the Immune and non-Immune Classes. The Immune Class was further divided into immune-activated and immune-suppressed subtypes. There was no significant difference in the top 20 genes in somatic SNPs among the three groups. In addition, the immune-activated subtype had significantly increased proportions of CD4 memory resting T cells, T cells, M1 macrophages, and M2 macrophages than the other two groups. The qRT-PCR results indicated that the mRNA expression levels of RYR2, FAT3, MDN1 and RYR1 were significantly down-regulated in OV compared with normal tissues. Moreover, the signatures of the TIME were validated using ICGC cohort and the ArrayExpress cohort. Our study clustered the OV patients into an immune-activated subtype, immune-suppressed subtype, and non-Immune Class and provided potential clues for further research on the molecular mechanisms and immunotherapy strategies of OV.
    Keywords:  bioinformatics analysis; immune; molecular subtype; ovarian cancer; tumor microenvironment
    DOI:  https://doi.org/10.3389/fcell.2022.772701
  8. Lancet Oncol. 2022 Apr 04. pii: S1470-2045(22)00128-0. [Epub ahead of print]
       BACKGROUND: We previously reported a 35-gene expression classifier identifying four clear-cell renal cell carcinoma groups (ccrcc1 to ccrcc4) with different tumour microenvironments and sensitivities to sunitinib in metastatic clear-cell renal cell carcinoma. Efficacy profiles might differ with nivolumab and nivolumab-ipilimumab. We therefore aimed to evaluate treatment efficacy and tolerability of nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors (VEGFR-TKIs) in patients according to tumour molecular groups.
    METHODS: This biomarker-driven, open-label, non-comparative, randomised, phase 2 trial included patients from 15 university hospitals or expert cancer centres in France. Eligible patients were aged 18 years or older, had an Eastern Cooperative Oncology Group performance status of 0-2, and had previously untreated metastatic clear-cell renal cell carcinoma. Patients were randomly assigned (1:1) using permuted blocks of varying sizes to receive either nivolumab or nivolumab-ipilimumab (ccrcc1 and ccrcc4 groups), or either a VEGFR-TKI or nivolumab-ipilimumab (ccrcc2 and ccrcc3 groups). Patients assigned to nivolumab-ipilimumab received intravenous nivolumab 3 mg/kg plus ipilimumab 1 mg/kg every 3 weeks for four doses followed by intravenous nivolumab 240 mg every 2 weeks. Patients assigned to nivolumab received intravenous nivolumab 240 mg every 2 weeks. Patients assigned to VEGFR-TKIs received oral sunitinib (50 mg/day for 4 weeks every 6 weeks) or oral pazopanib (800 mg daily continuously). The primary endpoint was the objective response rate by investigator assessment per Response Evaluation Criteria in Solid Tumors version 1.1. The primary endpoint and safety were assessed in the population who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, NCT02960906, and with the EU Clinical Trials Register, EudraCT 2016-003099-28, and is closed to enrolment.
    FINDINGS: Between June 28, 2017, and July 18, 2019, 303 patients were screened for eligibility, 202 of whom were randomly assigned to treatment (61 to nivolumab, 101 to nivolumab-ipilimumab, 40 to a VEGFR-TKI). In the nivolumab group, two patients were excluded due to a serious adverse event before the first study dose and one patient was excluded from analyses due to incorrect diagnosis. Median follow-up was 18·0 months (IQR 17·6-18·4). In the ccrcc1 group, objective responses were seen in 12 (29%; 95% CI 16-45) of 42 patients with nivolumab and 16 (39%; 24-55) of 41 patients with nivolumab-ipilimumab (odds ratio [OR] 0·63 [95% CI 0·25-1·56]). In the ccrcc4 group, objective responses were seen in seven (44%; 95% CI 20-70) of 16 patients with nivolumab and nine (50% 26-74) of 18 patients with nivolumab-ipilimumab (OR 0·78 [95% CI 0·20-3·01]). In the ccrcc2 group, objective responses were seen in 18 (50%; 95% CI 33-67) of 36 patients with a VEGFR-TKI and 19 (51%; 34-68) of 37 patients with nivolumab-ipilimumab (OR 0·95 [95% CI 0·38-2·37]). In the ccrcc3 group, no objective responses were seen in the four patients who received a VEGFR-TKI, and in one (20%; 95% CI 1-72) of five patients who received nivolumab-ipilimumab. The most common treatment-related grade 3-4 adverse events were hepatic failure and lipase increase (two [3%] of 58 for both) with nivolumab, lipase increase and hepatobiliary disorders (six [6%] of 101 for both) with nivolumab-ipilimumab, and hypertension (six [15%] of 40) with a VEGFR-TKI. Serious treatment-related adverse events occurred in two (3%) patients in the nivolumab group, 38 (38%) in the nivolumab-ipilimumab group, and ten (25%) patients in the VEGFR-TKI group. Three deaths were treatment-related: one due to fulminant hepatitis with nivolumab-ipilimumab, one death from heart failure with sunitinib, and one due to thrombotic microangiopathy with sunitinib.
    INTERPRETATION: We demonstrate the feasibility and positive effect of a prospective patient selection based on tumour molecular phenotype to choose the most efficacious treatment between nivolumab with or without ipilimumab and a VEGFR-TKI in the first-line treatment of metastatic clear-cell renal cell carcinoma.
    FUNDING: Bristol Myers Squibb, ARTIC.
    DOI:  https://doi.org/10.1016/S1470-2045(22)00128-0
  9. BMC Cancer. 2022 Apr 07. 22(1): 369
       BACKGROUND: The utility of circulating tumour DNA (ctDNA) for longitudinal tumour monitoring in pancreatic ductal adenocarcinoma (PDAC) has not been explored beyond mutations in the KRAS proto-oncogene. Here, we aimed to characterise and track patient-specific somatic ctDNA variants, to assess longitudinal changes in disease burden and explore the landscape of actionable alterations.
    METHODS: We followed 3 patients with resectable disease and 4 patients with unresectable disease, including 4 patients with ≥ 3 serial follow-up samples, of whom 2 were rare long survivors (> 5 years). We performed whole exome sequencing of tumour gDNA and plasma ctDNA (n = 20) collected over a ~ 2-year period from diagnosis through treatment to death or final follow-up. Plasma from 3 chronic pancreatitis cases was used as a comparison for analysis of ctDNA mutations.
    RESULTS: We detected > 55% concordance between somatic mutations in tumour tissues and matched serial plasma. Mutations in ctDNA were detected within known PDAC driver genes (KRAS, TP53, SMAD4, CDKN2A), in addition to patient-specific variants within alternative cancer drivers (NRAS, HRAS, MTOR, ERBB2, EGFR, PBRM1), with a trend towards higher overall mutation loads in advanced disease. ctDNA alterations with potential for therapeutic actionability were identified in all 7 patients, including DNA damage response (DDR) variants co-occurring with hypermutation signatures predictive of response to platinum chemotherapy. Longitudinal tracking in 4 patients with follow-up > 2 years demonstrated that ctDNA mutant allele fractions and clonal trends were consistent with CA19-9 measurements and/or clinically reported disease burden. The estimated prevalence of 'stem clones' was highest in an unresectable patient where changes in ctDNA dynamics preceded CA19-9 levels. Longitudinal evolutionary trajectories revealed ongoing subclonal evolution following chemotherapy.
    CONCLUSION: These results provide proof-of-concept for the use of exome sequencing of serial plasma to characterise patient-specific ctDNA profiles, and demonstrate the sensitivity of ctDNA in monitoring disease burden in PDAC even in unresectable cases without matched tumour genotyping. They reveal the value of tracking clonal evolution in serial ctDNA to monitor treatment response, establishing the potential of applied precision medicine to guide stratified care by identifying and evaluating actionable opportunities for intervention aimed at optimising patient outcomes for an otherwise intractable disease.
    Keywords:  Biomarkers; Circulating tumour DNA; Liquid biopsy; Monitoring
    DOI:  https://doi.org/10.1186/s12885-022-09387-6