bims-tumhet Biomed News
on Tumor Heterogeneity
Issue of 2021–11–07
five papers selected by
Sergio Marchini, Humanitas Research



  1. Front Oncol. 2021 ;11 675972
      Epithelial ovarian cancer (EOC) patients are generally diagnosed at an advanced stage, usually relapse after initial treatments, which include debulking surgery and adjuvant platinum-based chemotherapy, and eventually have poor 5-year survival of less than 50%. In recent years, promising survival benefits from maintenance therapy with poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) has changed the management of EOC in newly diagnosed and recurrent disease. Identification of BRCA mutations and/or homologous recombination deficiency (HRD) is critical for selecting patients for PARPi treatment. However, the currently available HRD assays are not perfect predictors of the clinical response to PARPis in EOC patients. In this review, we introduce the concept of synthetic lethality, the rationale of using PARPi when HRD is present in tumor cells, the clinical trials of PARPi incorporating the HRD assays for EOC, the current HRD assays, and other HRD assays in development.
    Keywords:  PARP inhibitor; RAD51 foci formation; epithelial ovarian cancer; genomic scar; homologous recombination deficiency; mutational signatures
    DOI:  https://doi.org/10.3389/fonc.2021.675972
  2. Cancer Res. 2021 Nov 04. pii: canres.1467.2021. [Epub ahead of print]
      The growing use of neoadjuvant chemotherapy to treat advanced-stage high-grade serous ovarian cancer (HGSOC) creates an opportunity to better understand chemotherapy-induced mutational and gene expression changes. Here we performed a cohort study including 34 patients with advanced stage IIIC or IV HGSOC to assess changes in the tumor genome and transcriptome in women receiving neoadjuvant chemotherapy. RNA-sequencing and panel DNA-sequencing of 596 cancer-related genes was performed on paired FFPE specimens collected before and after chemotherapy, and differentially expressed genes (DEGs) and CNVs in pre- and post-chemotherapy samples were identified. Following tissue and sequencing quality control, the final patient cohort consisted of 32 paired DNA and 20 paired RNA samples. Genomic analysis of paired samples did not reveal any recurrent chemotherapy-induced mutations. Gene expression analyses found that most DEGs were upregulated by chemotherapy, primarily in the chemotherapy resistant specimens. AP-1 transcription factor family genes (FOS, FOSB, FRA-1) were particularly upregulated in chemotherapy resistant samples. CNV analysis identified recurrent 11q23.1 amplification, which encompasses SIK2. In vitro, combined treatment with AP-1 or SIK2 inhibitors with carboplatin or paclitaxel demonstrated synergistic effects. These data suggest that AP-1 activity and SIK2 copy number amplification are induced by chemotherapy and may represent mechanisms by which chemotherapy resistance evolves in HGSOC. AP-1 and SIK2 are druggable targets with available small molecule inhibitors and represent potential targets to circumvent chemotherapy resistance.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-1467
  3. Front Oncol. 2021 ;11 666815
      Ovarian clear cell carcinoma (OCCC) is one of the major types of ovarian cancer and is of higher relative prevalence in Asians. It also shows higher possibility of resistance to cisplatin-based chemotherapy leading to poor prognosis. This may be attributed to the relative lack of mutations and aberrations in homologous recombination-associated genes, which are crucial in DNA damage response (DDR), such as BRCA1, BRCA2, p53, RAD51, and genes in the Fanconi anemia pathway. On the other hand, OCCC is characterized by a number of genetic defects rendering it vulnerable to DDR-targeting therapy, which is emerging as a potent treatment strategy for various cancer types. Mutations of ARID1A, PIK3CA, PTEN, and catenin beta 1 (CTNNB1), as well as overexpression of transcription factor hepatocyte nuclear factor-1β (HNF-1β), and microsatellite instability are common in OCCC. Of particular note is the loss-of-function mutations in ARID1A, which is found in approximately 50% of OCCC. ARID1A is crucial for processing of DNA double-strand break (DSB) and for sustaining DNA damage signaling, rendering ARID1A-deficient cells prone to impaired DNA damage checkpoint regulation and hence sensitive to poly ADP ribose polymerase (PARP) inhibitors. However, while preclinical studies have demonstrated the possibility to exploit DDR deficiency in OCCC for therapeutic purpose, progress in clinical application is lagging. In this review, we will recapitulate the preclinical studies supporting the potential of DDR targeting in OCCC treatment, with emphasis on the role of ARID1A in DDR. Companion diagnostic tests (CDx) for predicting susceptibility to PARP inhibitors are rapidly being developed for solid tumors including ovarian cancers and may readily be applicable on OCCC. The potential of various available DDR-targeting drugs for treating OCCC by drawing analogies with other solid tumors sharing similar genetic characteristics with OCCC will also be discussed.
    Keywords:  ARID1A; DNA damage response (DDR); ovarian cancer (OC); ovarian clear cell carcinoma; targeted therapy
    DOI:  https://doi.org/10.3389/fonc.2021.666815
  4. Cancer Cell Int. 2021 Nov 04. 21(1): 593
       BACKGROUND: The prognosis of high grade serous ovarian cancer (HGSOC) patients is closely related to the immune microenvironment and immune response. Based on this, the purpose of this study was to construct a model to predict chemosensitivity and prognosis, and provide novel biomarkers for immunotherapy and prognosis evaluation of HGSOC.
    METHODS: GSE40595 (38 samples), GSE18520 (63 samples), GSE26712 (195 samples), TCGA (321 samples) and GTEx (88 samples) were integrated to screen differential expressed genes (DEGs) of HGSOC. The prognosis related DEGs (DEPGs) were screened through overall survival analysis. The DEGs-encoded protein-protein interaction network was constructed and hub genes of DEPGs (DEPHGs) were generated by STRING. Immune characteristics of the samples were judged by ssGSEA, ESTIMATE and CYBERSORT. TIMER was used to analyze the relationship between DEPHGs and tumor-infiltrating immunocytes, as well as the immune checkpoint genes, finally immune-related DEPHGs (IDEPHGs) were determined, and whose expression in 12 pairs of HGSOC tissues and tumor-adjacent tissues were analyzed by histological verification. Furthermore, the chemosensitivity genes in IDEPHGs were screened according to GSE15622 (n = 65). Finally, two prediction models of paclitaxel sensitivity score (PTX score) and carboplatin sensitivity score (CBP score) were constructed by lasso algorithm. The area under curve was calculated to estimate the accuracy of candidate gene models in evaluating chemotherapy sensitivity.
    RESULTS: 491 DEGs were screened and 37 DEGs were identified as DEPGs, and 11 DEPHGs were further identified. Among them, CXCL13, IDO1, PI3, SPP1 and TRIM22 were screened as IDEPHGs and verified in the human tissues. Further analysis showed that IDO1, PI3 and TRIM22 could independently affect the chemotherapy sensitivity of HGSOC patients. The PTX score was significantly better than TRIM22, PI3, SPP1, IDO1 and CXCL13 in predicting paclitaxel sensitivity, so was CBP score in predicting carboplatin sensitivity. What's more, both of the HGSOC patients with high PTX score or high CBP score had longer survival time.
    CONCLUSIONS: Five IDEPHGs identified through comprehensive bioinformatics analysis were closely related with the prognosis, immune microenvironment and chemotherapy sensitivity of HGSOC. Two prediction models based on IDEPHGs might have potential application of chemotherapy sensitivity and prognosis for patients with HGSOC.
    Keywords:  Chemosensitivity; Differentially expressed genes; Immune; Ovarian cancer; Prognosis
    DOI:  https://doi.org/10.1186/s12935-021-02295-y
  5. Nat Commun. 2021 Nov 01. 12(1): 6278
      During tumor progression, cancer cells come into contact with various non-tumor cell types, but it is unclear how tumors adapt to these new environments. Here, we integrate spatially resolved transcriptomics, single-cell RNA-seq, and single-nucleus RNA-seq to characterize tumor-microenvironment interactions at the tumor boundary. Using a zebrafish model of melanoma, we identify a distinct "interface" cell state where the tumor contacts neighboring tissues. This interface is composed of specialized tumor and microenvironment cells that upregulate a common set of cilia genes, and cilia proteins are enriched only where the tumor contacts the microenvironment. Cilia gene expression is regulated by ETS-family transcription factors, which normally act to suppress cilia genes outside of the interface. A cilia-enriched interface is conserved in human patient samples, suggesting it is a conserved feature of human melanoma. Our results demonstrate the power of spatially resolved transcriptomics in uncovering mechanisms that allow tumors to adapt to new environments.
    DOI:  https://doi.org/10.1038/s41467-021-26614-z