Semin Oncol. 2025 Dec 02. pii: S0093-7754(25)00146-0. [Epub ahead of print]53(1):
152454
Melanoma, a highly aggressive type of skin cancer, has undergone incredible developments in immunotherapy, particularly in modulating T-cell immunity. T cells are essential components of the antitumor immune response and can undoubtedly influence the effectiveness of melanoma treatment. This review will evaluate the roles of the different T cell subsets (CD8+, CD4+, and Tregs) in melanoma immunity. CD8+ T cells are important effectors, as they primarily recognize and kill tumor cells. However, CD8+ T cells are often dysfunctional due to exhaustion driven by chronic antigen exposure and dysfunctional immune checkpoint pathways, specifically PD-1 and CTLA-4. On the other hand, CD4+ T cells, also known as T helper cells, play a crucial role in coordinating both pro- and antitumor immune responses. In contrast to T cells, Tregs, which are often present in the tumor microenvironment, lead to immune suppression through their activity, limiting T cell activity. This review will also examine the mechanisms of T-cell exhaustion, metabolic reprogramming within the tumor microenvironment (TME) of T-cell subsets, and the role of immune checkpoint pathways, such as CTLA-4 and PD-1, in T-cell immunity. Adoptive cell therapies (ACT), specifically Tumor-Infiltrating Lymphocyte (TIL) therapy and Chimeric Antigen Receptor (CAR) T-cell therapy, have shown the ability to rejuvenate T-cells to enhance clinical outcomes. However, several resistance mechanisms and the suppressive TME presents difficulties. Future efforts will focus on combination therapies, metabolic interventions, and novel engineering techniques to overcome barriers to T-cell function exhaustion and T-cell persistence. Evaluating biomarkers associated with early prediction for therapeutic benefit and associated toxicity is important for personalizing a particular treatment. Ultimately, this review highlights the potential of targeting T-cell exhaustion to enhance the effectiveness of T-cell-based therapies in improving outcomes for melanoma patients.
Keywords: Exhaustion; Immunity; Immunotherapy; Melanoma; T cell