Front Immunol. 2024 ;15 1450245
Zhen Sun,
Aotian Xu,
Zhaojun Wu,
Xiaohao Lan,
Ganchen Gao,
Bin Guo,
Zhongjie Yu,
Lin Shao,
Hao Wu,
Min Lv,
Yongjie Wang,
Yi Zhao,
Bin Wang.
Introduction: The adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) has proven clinically beneficial in patients with non-small cell lung cancer refractory to checkpoint blockade immunotherapy, which has prompted interest in TIL-adoptive cell transfer. The transgenic expression of IL15 can promote the expansion, survival, and function of T cells ex vivo and in vivo and enhance their anti-tumor activity. The effect of expressing mIL15 regulated by hypoxia in the tumor microenvironment on the expansion, survival, and stem-like properties of TILs has not been explored.
Methods: Using TILs expanded from the tumor tissues of lung cancer patients, TILs with or without mIL15 expression (TIL-mIL15 or UN-TIL) were generated by lentiviral transduction. To reflect the advantages of mTIL15, the cells were divided into groups with IL2 (TIL-mIL15+IL2) or without IL2 (TIL-mIL15-IL2).
Results: Compared to UN-TIL cells, mIL15 expression had a similar capacity for promoting TIL proliferation and maintaining cell viability. Our experimental findings indicate that, compared to UN-TIL and TIL-mIL15+IL2 cells, the expression of mIL15 in TIL-mIL15-IL2 cells promoted the formation of stem-like TILs (CD8+CD39-CD69-) and led to significant decreases in the proportion and absolute number of terminally differentiated TILs (CD8+CD39+CD69+). RNA-Seq data revealed that in TIL-mIL15-IL2 cells, the expression of genes related to T cell differentiation and effector function, including PRDM1, ID2, EOMES, IFNG, GZMB, and TNF, were significantly decreased, whereas the expression of the memory stem-like T cell marker TCF7 was significantly increased. Furthermore, compared to UN-TIL and TIL-mIL15+IL2 cells, TIL-mIL15-IL2 cells showed significantly lower expression levels of inhibitory receptors LAG3, TIGIT, and TIM3, which was consistent with the RNA-Seq results.
Discussion: This study demonstrates the superior persistence of TIL-mIL15-IL2 cells, which may serve as a novel treatment strategy for lung cancer patients.
Keywords: adoptive cell transfer; expansion; hypoxia regulation; immunotherapy; lung cancer; membrane-bound interleukin 15; tumor-infiltrating lymphocytes