bims-tuchim Biomed News
on Tumor-on-chip models
Issue of 2021–06–06
fourteen papers selected by
Philipp Albrecht, Friedrich Schiller University



  1. Int J Mol Sci. 2021 May 30. pii: 5862. [Epub ahead of print]22(11):
      The immune system is a fine modulator of the tumor biology supporting or inhibiting its progression, growth, invasion and conveys the pharmacological treatment effect. Tumors, on their side, have developed escaping mechanisms from the immune system action ranging from the direct secretion of biochemical signals to an indirect reaction, in which the cellular actors of the tumor microenvironment (TME) collaborate to mechanically condition the extracellular matrix (ECM) making it inhospitable to immune cells. TME is composed of several cell lines besides cancer cells, including tumor-associated macrophages, cancer-associated fibroblasts, CD4+ and CD8+ lymphocytes, and innate immunity cells. These populations interface with each other to prepare a conservative response, capable of evading the defense mechanisms implemented by the host's immune system. The presence or absence, in particular, of cytotoxic CD8+ cells in the vicinity of the main tumor mass, is able to predict, respectively, the success or failure of drug therapy. Among various mechanisms of immunescaping, in this study, we characterized the modulation of the phenotypic profile of CD4+ and CD8+ cells in resting and activated states, in response to the mechanical pressure exerted by a three-dimensional in vitro system, able to recapitulate the rheological and stiffness properties of the tumor ECM.
    Keywords:  3D culture; T lymphocytes; extracellular matrix; tumor microenvironment
    DOI:  https://doi.org/10.3390/ijms22115862
  2. Lab Chip. 2021 Jun 04.
      Immunotherapy is a powerful and targeted cancer treatment that exploits the body's immune system to attack and eliminate cancerous cells. This form of therapy presents the possibility of long-term control and prevention of recurrence due to the memory capabilities of the immune system. Various immunotherapies are successful in treating haematological malignancies and have dramatically improved outcomes in melanoma. However, tackling other solid tumours is more challenging, mostly because of the immunosuppressive tumour microenvironment (TME). Current in vitro models based on traditional 2D cell monolayers and animal models, such as patient-derived xenografts, have limitations in their ability to mimic the complexity of the human TME. As a result, they have inadequate translational value and can be poorly predictive of clinical outcome. Thus, there is a need for robust in vitro preclinical tools that more faithfully recapitulate human solid tumours to test novel immunotherapies. Microfluidics and lab-on-a-chip technologies offer opportunities, especially when performing mechanistic studies, to understand the role of the TME in immunotherapy, and to expand the experimental throughput when using patient-derived tissue through its miniaturization capabilities. This review first introduces the basic concepts of immunotherapy, presents the current preclinical approaches used in immuno-oncology for solid tumours and then discusses the underlying challenges. We provide a rationale for using microfluidic-based approaches, highlighting the most recent microfluidic technologies and methodologies that have been used for studying cancer-immune cell interactions and testing the efficacy of immunotherapies in solid tumours. Ultimately, we discuss achievements and limitations of the technology, commenting on potential directions for incorporating microfluidic technologies in future immunotherapy studies.
    DOI:  https://doi.org/10.1039/d0lc01305f
  3. Cancers (Basel). 2021 May 22. pii: 2551. [Epub ahead of print]13(11):
      Two-dimensional cell culture-based platforms are easy and reproducible, however, they do not resemble the heterotypic cell-cell interactions or the complex tumor microenvironment. These parameters influence the treatment response and the cancer cell fate. Platforms to study the efficacy of anti-cancer treatments and their impact on the tumor microenvironment are currently being developed. In this study, we established robust, reproducible, and easy-to-use short-term spheroid cultures to mimic clear cell renal cell carcinoma (ccRCC). These 3D co-cultures included human endothelial cells, fibroblasts, immune cell subsets, and ccRCC cell lines, both parental and sunitinib-resistant. During spheroid formation, cells induce the production and secretion of the extracellular matrix. We monitored immune cell infiltration, surface protein expression, and the response to a treatment showing that the immune cells infiltrated the spheroid co-cultures within 6 h. Treatment with an optimized drug combination or the small molecule-based targeted drug sunitinib increased immune cell infiltration significantly. Assessing the therapeutic potential of this drug combination in this platform, we revealed that the expression of PD-L1 increased in 3D co-cultures. The cost- and time-effective establishment of our 3D co-culture model and its application as a pre-clinical drug screening platform can facilitate the treatment validation and clinical translation.
    Keywords:  3D co-cultures; PD-L1; combination therapy; heterotypic spheroids; immune cells; immunotherapy; infiltration; renal cell carcinoma; sunitinib
    DOI:  https://doi.org/10.3390/cancers13112551
  4. Micromachines (Basel). 2021 May 09. pii: 535. [Epub ahead of print]12(5):
      The tumor microenvironment (TME) influences cancer progression. Therefore, engineered TME models are being developed for fundamental research and anti-cancer drug screening. This paper reports the biofabrication of 3D-printed avascular structures that recapitulate several features of the TME. The tumor is represented by a hydrogel droplet uniformly loaded with breast cancer cells (106 cells/mL); it is embedded in the same type of hydrogel containing primary cells-tumor-associated fibroblasts isolated from the peritumoral environment and peripheral blood mononuclear cells. Hoechst staining of cryosectioned tissue constructs demonstrated that cells remodeled the hydrogel and remained viable for weeks. Histological sections revealed heterotypic aggregates of malignant and peritumoral cells; moreover, the constituent cells proliferated in vitro. To investigate the interactions responsible for the experimentally observed cellular rearrangements, we built lattice models of the bioprinted constructs and simulated their evolution using Metropolis Monte Carlo methods. Although unable to replicate the complexity of the TME, the approach presented here enables the self-assembly and co-culture of several cell types of the TME. Further studies will evaluate whether the bioprinted constructs can evolve in vivo in animal models. If they become connected to the host vasculature, they may turn into a fully organized TME.
    Keywords:  breast cancer; extrusion bioprinting; peripheral blood mononuclear cells; tumor-associated fibroblasts
    DOI:  https://doi.org/10.3390/mi12050535
  5. Cancers (Basel). 2021 May 19. pii: 2473. [Epub ahead of print]13(10):
      Purpose: Compare pancreatic ductal adenocarcinoma (PDAC), preclinical models, by their transcriptome and drug response landscapes to evaluate their complementarity. Experimental Design: Three paired PDAC preclinical models-patient-derived xenografts (PDX), xenograft-derived pancreatic organoids (XDPO) and xenograft-derived primary cell cultures (XDPCC)-were derived from 20 patients and analyzed at the transcriptomic and chemosensitivity level. Transcriptomic characterization was performed using the basal-like/classical subtyping and the PDAC molecular gradient (PAMG). Chemosensitivity for gemcitabine, irinotecan, 5-fluorouracil and oxaliplatin was established and the associated biological pathways were determined using independent component analysis (ICA) on the transcriptome of each model. The selection criteria used to identify the different components was the chemosensitivity score (CSS) found for each drug in each model. Results: PDX was the most dispersed model whereas XDPO and XDPCC were mainly classical and basal-like, respectively. Chemosensitivity scoring determines that PDX and XDPO display a positive correlation for three out of four drugs tested, whereas PDX and XDPCC did not correlate. No match was observed for each tumor chemosensitivity in the different models. Finally, pathway analysis shows a significant association between PDX and XDPO for the chemosensitivity-associated pathways and PDX and XDPCC for the chemoresistance-associated pathways. Conclusions: Each PDAC preclinical model possesses a unique basal-like/classical transcriptomic phenotype that strongly influences their global chemosensitivity. Each preclinical model is imperfect but complementary, suggesting that a more representative approach of the clinical reality could be obtained by combining them. Translational Relevance: The identification of molecular signatures that underpin drug sensitivity to chemotherapy in PDAC remains clinically challenging. Importantly, the vast majority of studies using preclinical in vivo and in vitro models fail when transferred to patients in a clinical setting despite initially promising results. This study presents for the first time a comparison between three preclinical models directly derived from the same patients. We show that their applicability to preclinical studies should be considered with a complementary focus, avoiding tumor-based direct extrapolations, which might generate misleading conclusions and consequently the overlook of clinically relevant features.
    Keywords:  chemosensitivity prediction; in vitro models; in vivo models; pancreatic cancer; personalized medicine
    DOI:  https://doi.org/10.3390/cancers13102473
  6. Cancers (Basel). 2021 May 18. pii: 2461. [Epub ahead of print]13(10):
      To rationally improve targeted drug delivery to tumor cells, new methods combining in silico and physiologically relevant in vitro models are needed. This study combines mathematical modeling with 3D in vitro co-culture models to study the delivery of engineered proteins, called designed ankyrin repeat proteins (DARPins), in biomimetic tumor microenvironments containing fibroblasts and tumor cells overexpressing epithelial cell adhesion molecule (EpCAM) or human epithelial growth factor receptor (HER2). In multicellular tumor spheroids, we observed strong binding-site barriers in combination with low apparent diffusion coefficients of 1 µm2·s-1 and 2 µm2 ·s-1 for EpCAM- and HER2-binding DARPin, respectively. Contrasting this, in a tumor-on-a-chip model for investigating delivery in real-time, transport was characterized by hindered diffusion as a consequence of the lower local tumor cell density. Finally, simulations of the diffusion of an EpCAM-targeting DARPin fused to a fragment of Pseudomonas aeruginosa exotoxin A, which specifically kills tumor cells while leaving fibroblasts untouched, correctly predicted the need for concentrations of 10 nM or higher for extensive tumor cell killing on-chip, whereas in 2D models picomolar concentrations were sufficient. These results illustrate the power of combining in vitro models with mathematical modeling to study and predict the protein activity in complex 3D models.
    Keywords:  DARPin; protein diffusion; spheroid; tumor targeting; tumor-on-a-chip
    DOI:  https://doi.org/10.3390/cancers13102461
  7. Cancers (Basel). 2021 May 17. pii: 2427. [Epub ahead of print]13(10):
      Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and no significant improvement in patient survival has been seen in the past three decades. Treatment options are limited and selection of chemotherapy in the clinic is usually based on the performance status of a patient rather than the biology of their disease. In recent years, research has attempted to unlock a personalised treatment strategy by identifying actionable molecular targets in tumour cells or using preclinical models to predict the effectiveness of chemotherapy. However, these approaches rely on the biology of PDAC tumour cells only and ignore the importance of the microenvironment and fibrotic stroma. In this review, we highlight the importance of the microenvironment in driving the chemoresistant nature of PDAC and the need for preclinical models to mimic the complex multi-cellular microenvironment of PDAC in the precision medicine pipeline. We discuss the potential for ex vivo whole-tissue culture models to inform precision medicine and their role in developing novel therapeutic strategies that hit both tumour and stromal compartments in PDAC. Thus, we highlight the critical role of the tumour microenvironment that needs to be addressed before a precision medicine program for PDAC can be implemented.
    Keywords:  microenvironment; pancreatic cancer; pre-clinical models; precision medicine
    DOI:  https://doi.org/10.3390/cancers13102427
  8. Adv Drug Deliv Rev. 2021 Jun 01. pii: S0169-409X(21)00191-5. [Epub ahead of print]
      Based on our exponentially increasing knowledge of stromal heterogeneity from advances in single-cell technologies, the notion that stromal cell types exist as a spectrum of unique subpopulations that have specific functions and spatial distributions in the tumor microenvironment has significant impact on tumor modeling for drug development and personalized drug testing. In this Review, we discuss the importance of incorporating stromal heterogeneity and tumor architecture, and propose an overall approach to guide the reconstruction of stromal heterogeneity in vitro for tumor modeling. These next-generation tumor models may support the development of more precise drugs targeting specific stromal cell subpopulations, as well as enable improved recapitulation of patient tumors in vitro for personalized drug testing.
    Keywords:  Stromal heterogeneity; cancer-associated fibroblasts; hydrogel; in vitro models; microfluidics; tumor microenvironment; tumor-associated macrophages; tumoral niches
    DOI:  https://doi.org/10.1016/j.addr.2021.05.027
  9. Int J Mol Sci. 2021 May 13. pii: 5158. [Epub ahead of print]22(10):
      Immune checkpoint inhibitor (ICI) therapies have shown great promise in cancer treatment. However, the intra-heterogeneity is a major barrier to reasonably classifying the potential benefited patients. Comprehensive heterogeneity analysis is needed to solve these clinical issues. In this study, the samples from pan-cancer and independent breast cancer datasets were divided into four tumor immune microenvironment (TIME) subtypes based on tumor programmed death ligand 1 (PD-L1) expression level and tumor-infiltrating lymphocyte (TIL) state. As the combination of the TIL Z score and PD-L1 expression showed superior prediction of response to ICI in multiple data sets compared to other methods, we used the TIL Z score and PD-L1 to classify samples. Therefore, samples were divided by combined TIL Z score and PD-L1 to identify four TIME subtypes, including type I (3.24%), type II (43.24%), type III (6.76%), and type IV (46.76%). Type I was associated with favorable prognosis with more T and DC cells, while type III had the poorest condition and composed a higher level of activated mast cells. Furthermore, TIME subtypes exhibited a distinct genetic and transcriptional feature: type III was observed to have the highest mutation rate (77.92%), while co-mutations patterns were characteristic in type I, and the PD-L1 positive subgroup showed higher carbohydrates, lipids, and xenobiotics metabolism compared to others. Overall, we developed a robust method to classify TIME and analyze the divergence of prognosis, immune cell composition, genomics, and transcriptomics patterns among TIME subtypes, which potentially provides insight for classification of TIME and a referrable theoretical basis for the screening benefited groups in the ICI immunotherapy.
    Keywords:  immunotherapy; programmed death ligand 1; the Cancer Genome Atlas; tumor immune microenvironment; tumor-infiltrating lymphocyte
    DOI:  https://doi.org/10.3390/ijms22105158
  10. Proc Natl Acad Sci U S A. 2021 Jun 08. pii: e2025631118. [Epub ahead of print]118(23):
      Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, which is refractory to all currently available treatments and bears dismal prognosis. About 70% of all PDAC cases harbor mutations in the TP53 tumor suppressor gene. Many of those are missense mutations, resulting in abundant production of mutant p53 (mutp53) protein in the cancer cells. Analysis of human PDAC patient data from The Cancer Genome Atlas (TCGA) revealed a negative association between the presence of missense mutp53 and infiltration of CD8+ T cells into the tumor. Moreover, CD8+ T cell infiltration was negatively correlated with the expression of fibrosis-associated genes. Importantly, silencing of endogenous mutp53 in KPC cells, derived from mouse PDAC tumors driven by mutant Kras and mutp53, down-regulated fibrosis and elevated CD8+ T cell infiltration in the tumors arising upon orthotopic injection of these cells into the pancreas of syngeneic mice. Moreover, the tumors generated by mutp53-silenced KPC cells were markedly smaller than those elicited by mutp53-proficient control KPC cells. Altogether, our findings suggest that missense p53 mutations may contribute to worse PDAC prognosis by promoting a more vigorous fibrotic tumor microenvironment and impeding the ability of the immune system to eliminate the cancer cells.
    Keywords:  PDAC; fibrosis; immune infiltration; p53; tumor microenvironment
    DOI:  https://doi.org/10.1073/pnas.2025631118
  11. ACS Biomater Sci Eng. 2021 Jun 03.
       BACKGROUND: Tumorigenesis is attributed to the interactions of cancer cells with the tumor microenvironment through both biochemical cues and physical stimuli. Increased matrix deposition and realignment of the collagen fibers are detected by cancer cells, inducing epithelial-to-mesenchymal transition, which in turn stimulates cell motility and invasiveness.
    METHODS: This review provides an overview of current research on the role of the physical microenvironment in cancer invasion. This was achieved by using a systematic approach and providing meta-analyses. Particular focus was placed on in vitro three-dimensional models of epithelial cancers. We investigated questions such as the effect of matrix stiffening, activation of stromal cells, and identified potential advances in mechano-based therapies.
    RESULTS: Meta-analysis revealed that 64% of studies report cancer invasion promotion as stiffness increases, while 36% report the opposite. Experimental approaches and data interpretations were varied, each affecting the invasion of cancer differently. Examples are the experimental timeframes used (24 h to 21 days), the type of polymer used (24 types), and choice of cell line (33 cell lines). The stiffness of the 3D matrices varied from 0.5 to 300 kPa and 19% of these matrices' stiffness were outside commonly accepted physiological range. 100% of the studies outside biological stiffness range (above 20 kPa) report that stiffness does not promote cancer invasion.
    CONCLUSIONS: Taking this analysis into account, we inform on the type of experimental approaches that could be the most relevant and provide what would be a standardized protocol and reporting strategy.
    Keywords:  biomechanics; cancer; invasion; stiffness; tissue engineering; tumour microenvironment
    DOI:  https://doi.org/10.1021/acsbiomaterials.0c01530
  12. Nat Biomed Eng. 2021 Jun 03.
      The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.
    DOI:  https://doi.org/10.1038/s41551-021-00737-6
  13. Micromachines (Basel). 2021 May 12. pii: 550. [Epub ahead of print]12(5):
      Microfluidic microphysiological systems (MPSs) or "organs-on-a-chip" are a promising alternative to animal models for drug screening and toxicology tests. However, most microfluidic devices employ polydimethylsiloxane (PDMS) as the structural material; and this has several drawbacks. Cyclo-olefin polymers (COPs) are more advantageous than PDMS and other thermoplastic materials because of their low drug absorption and autofluorescence. However, most COP-based microfluidic devices are fabricated by solvent bonding of the constituent parts. Notably, the remnant solvent can affect the cultured cells. This study employed a photobonding process with vacuum ultraviolet (VUV) light to fabricate microfluidic devices without using any solvent and compared their performance with that of solvent-bonded systems (using cyclohexane, dichloromethane, or toluene as the solvent) to investigate the effects of residual solvent on cell cultures. Quantitative immunofluorescence assays indicated that the coating efficiencies of extracellular matrix proteins (e.g., Matrigel and collagen I) were lower in solvent-bonded COP devices than those in VUV-bonded devices. Furthermore, the cytotoxicity of the systems was evaluated using SH-SY5Y neuroblastoma cells, and increased apoptosis was observed in the solvent-processed devices. These results provide insights into the effects of solvents used during the fabrication of microfluidic devices and can help prevent undesirable reactions and establish good manufacturing practices.
    Keywords:  cytotoxicity; microfluidic device; microphysiological systems; organs-on-a-chip; photobonding; solvent bonding; vacuum ultraviolet
    DOI:  https://doi.org/10.3390/mi12050550
  14. Bioengineering (Basel). 2021 May 05. pii: 58. [Epub ahead of print]8(5):
      Automated biomimetic systems for the preclinical testing of drugs are of great interest. Here, an in vitro testing platform for in vivo adapted drug absorption studies is presented. It has been designed with a focus on easy handling and the usability of established cell cultivation techniques in standard well plate inserts. The platform consists of a microfluidic device, which accommodates a well plate insert with pre-cultivated cells, and provides a fluid flow with dynamic drug dilution profiles. A low-cost single-board computer with a touchscreen was used as a control unit. This provides a graphical user interface, controls the syringe pump flow rates, and records the transepithelial electrical resistance. It thereby enables automated parallel testing in multiple devices at the same time. To demonstrate functionality, an MDCK cell layer was used as a model for an epithelial barrier for drug permeation testing. This confirms the possibility of performing absorption studies on barrier tissues under conditions close to those in vivo. Therefore, a further reduction in animal experiments can be expected.
    Keywords:  MDCK; TEER; drug testing; in vitro; microfluidic test system; organ-on-chip; permeation; sodium fluorescein; transepithelial electrical resistance
    DOI:  https://doi.org/10.3390/bioengineering8050058