bims-tuchim Biomed News
on Tumor-on-chip models
Issue of 2021–05–30
nineteen papers selected by
Philipp Albrecht, Friedrich Schiller University



  1. Front Immunol. 2021 ;12 660944
      Hypoxia, angiogenesis, and immunosuppression have been proposed to be interrelated events that fuel tumor progression and impair the clinical effectiveness of anti-tumor therapies. Here we present new mechanistic data highlighting the role of hypoxia in fine-tuning CD8 T cell exhaustion in vitro, in an attempt to reconcile seemingly opposite evidence regarding the impact of hypoxia on functional features of exhausted CD8 T cells. Focusing on the recently characterized terminally-differentiated and progenitor exhausted CD8 T cells, we found that both hypoxia and its regulated mediator, vascular endothelial growth factor (VEGF)-A, promote the differentiation of PD-1+ TIM-3+ CXCR5+ terminally exhausted-like CD8 T cells at the expense of PD-1+ TIM-3- progenitor-like subsets without affecting tumor necrosis factor (TNF)-α and interferon (IFN)-γ production or granzyme B (GZMB) expression by these subpopulations. Interestingly, hypoxia accentuated the proangiogenic secretory profile in exhausted CD8 T cells. VEGF-A was the main factor differentially secreted by exhausted CD8 T cells under hypoxic conditions. In this sense, we found that VEGF-A contributes to generation of terminally exhausted CD8 T cells during in vitro differentiation. Altogether, our findings highlight the reciprocal regulation between hypoxia, angiogenesis, and immunosuppression, providing a rational basis to optimize synergistic combinations of antiangiogenic and immunotherapeutic strategies, with the overarching goal of improving the efficacy of these treatments.
    Keywords:  CD8 T cell exhaustion; Hypoxia; VEGF-A; anti cancer agents; immunosuppression
    DOI:  https://doi.org/10.3389/fimmu.2021.660944
  2. Methods Mol Biol. 2021 ;2299 447-456
      In vitro culturing of cells in two-dimensional (2D) environments is a widespread used methodology in biomedical research. Most commonly, cells are cultured on artificial plastic dish surfaces, which lead to abnormal functional behaviors, as plastic does not reflect the native microenvironment found in vivo or in situ. Therefore, a multitude of three-dimensional (3D) cell culture systems were developed in the past years, which aim to bridge the gap between 2D cell culture dishes and the in vivo situation. One of the more recent development in the field, the generation of viable precision-cut tissue slices from various organs emerged as an exciting approach to study complex interactions and biological processes ex vivo in 3D. Decellularization of such tissue slices leads to the removal of all functional cells, and leaves behind a scaffold of extracellular matrix (ECM), which closely recapitulates the molecular composition, mechanical properties, topology, and microarchitecture of native ECM. Subsequently, decellularized precision-cut lung slices (PCLS), also called 3D lung tissue culture (3D-LTCs), can be successfully reseeded with a variety of cell types, including fibroblasts, which attach to and engraft into the matrix. Here, we describe the generation of PCLS from resected human lung tissue and their decellularization and recellularization with primary human fibroblasts. This novel 3D tissue culture model allows for various functional studies of fibroblast behavior on native ECM composition and topology.
    Keywords:  3D cell culture models; 3D-LTCs; Decellularization; Fibroblasts; Human ex vivo models; Myofibroblasts; PCLS; Pharmacological testing; Precision-cut lung slices; Recellularization; Tissue engineering; Transdifferentiation
    DOI:  https://doi.org/10.1007/978-1-0716-1382-5_30
  3. Biomed Mater. 2021 May 24.
      A microfluidic technique is presented for micropatterning protein domains and cell cultures within permanently bonded organs-on-chip devices. This method is based on the use of polydimethylsiloxane layers coupled with the plasma ablation technique for selective protein removal. We show how this technique can be employed to generate a multi-organ in vitro model directly within a microscale platform suitable for pharmacokinetic-based drug screening. We miniaturized a liver model based on micropatterned co-cultures in dual-compartment microfluidic devices. The cytotoxic effect of liver-metabolized Tegafur on colon cancer cell line was assessed using two microfluidic devices where microgrooves and valves systems are used to model drug diffusion between culture compartments. The platforms can reproduce the metabolism of Tegafur in the liver, thus killing colon cancer cells. The proposed plasma-enhanced microfluidic protein patterning method thus successfully combines the ability to generate precise cell micropatterning with the intrinsic advantages of microfluidics in cell biology.
    Keywords:  biofabrication; cytotoxicity; metabolism; microfluidics; micropatterning; multi-organ-on-chip
    DOI:  https://doi.org/10.1088/1748-605X/ac0454
  4. Sci Adv. 2021 May;pii: eabg2237. [Epub ahead of print]7(22):
      Most of the vascular platforms currently being studied are lab-on-a-chip types that mimic capillary networks and are applied for vascular response analysis in vitro. However, these platforms have a limitation in clearly assessing the physiological phenomena of native blood vessels compared to in vivo evaluation. Here, we developed a simply fabricable tissue-engineered vascular microphysiological platform (TEVMP) with a three-dimensional (3D) vascular structure similar to an artery that can be applied for ex vivo and in vivo evaluation. Furthermore, we applied the TEVMP as ex vivo and in vivo screening systems to evaluate the effect of human CD200 (hCD200) overexpression in porcine endothelial cells (PECs) on vascular xenogeneic immune responses. These screening systems, in contrast to 2D in vitro and cellular xenotransplantation in vivo models, clearly demonstrated that hCD200 overexpression effectively suppressed vascular xenograft rejection. The TEVMP has a high potential as a platform to assess various vascular-related responses.
    DOI:  https://doi.org/10.1126/sciadv.abg2237
  5. Proc Natl Acad Sci U S A. 2021 Jun 01. pii: e2021135118. [Epub ahead of print]118(22):
      Contact guidance is a powerful topographical cue that induces persistent directional cell migration. Healthy tissue stroma is characterized by a meshwork of wavy extracellular matrix (ECM) fiber bundles, whereas metastasis-prone stroma exhibit less wavy, more linear fibers. The latter topography correlates with poor prognosis, whereas more wavy bundles correlate with benign tumors. We designed nanotopographic ECM-coated substrates that mimic collagen fibril waveforms seen in tumors and healthy tissues to determine how these nanotopographies may regulate cancer cell polarization and migration machineries. Cell polarization and directional migration were inhibited by fibril-like wave substrates above a threshold amplitude. Although polarity signals and actin nucleation factors were required for polarization and migration on low-amplitude wave substrates, they did not localize to cell leading edges. Instead, these factors localized to wave peaks, creating multiple "cryptic leading edges" within cells. On high-amplitude wave substrates, retrograde flow from large cryptic leading edges depolarized stress fibers and focal adhesions and inhibited cell migration. On low-amplitude wave substrates, actomyosin contractility overrode the small cryptic leading edges and drove stress fiber and focal adhesion orientation along the wave axis to mediate directional migration. Cancer cells of different intrinsic contractility depolarized at different wave amplitudes, and cell polarization response to wavy substrates could be tuned by manipulating contractility. We propose that ECM fibril waveforms with sufficiently high amplitude around tumors may serve as "cell polarization barriers," decreasing directional migration of tumor cells, which could be overcome by up-regulation of tumor cell contractility.
    Keywords:  cancer; contractility; polarization; topography; tumor ECM
    DOI:  https://doi.org/10.1073/pnas.2021135118
  6. Nat Commun. 2021 May 24. 12(1): 3044
      Unlike other malignancies, therapeutic options in pancreatic ductal adenocarcinoma (PDAC) are largely limited to cytotoxic chemotherapy without the benefit of molecular markers predicting response. Here we report tumor-cell-intrinsic chromatin accessibility patterns of treatment-naïve surgically resected PDAC tumors that were subsequently treated with (Gem)/Abraxane adjuvant chemotherapy. By ATAC-seq analyses of EpCAM+ PDAC malignant epithelial cells sorted from 54 freshly resected human tumors, we show here the discovery of a signature of 1092 chromatin loci displaying differential accessibility between patients with disease free survival (DFS) < 1 year and patients with DFS > 1 year. Analyzing transcription factor (TF) binding motifs within these loci, we identify two TFs (ZKSCAN1 and HNF1b) displaying differential nuclear localization between patients with short vs. long DFS. We further develop a chromatin accessibility microarray methodology termed "ATAC-array", an easy-to-use platform obviating the time and cost of next generation sequencing. Applying this methodology to the original ATAC-seq libraries as well as independent libraries generated from patient-derived organoids, we validate ATAC-array technology in both the original ATAC-seq cohort as well as in an independent validation cohort. We conclude that PDAC prognosis can be predicted by ATAC-array, which represents a low-cost, clinically feasible technology for assessing chromatin accessibility profiles.
    DOI:  https://doi.org/10.1038/s41467-021-23237-2
  7. Adv Sci (Weinh). 2021 May;8(10): 2004705
      Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin-like protein (HELP) is reported, which enables the formation, differentiation, and passaging of adult primary tissue-derived, epithelial-only intestinal organoids. HELP enables the encapsulation of dissociated patient-derived cells, which then undergo proliferation and formation of enteroids, spherical structures with polarized internal lumens. After 12 rounds of passaging, enteroid growth in HELP materials is found to be statistically similar to that in animal-derived matrices. HELP materials also support the differentiation of human enteroids into mature intestinal cell subtypes. HELP matrices allow stiffness, stress relaxation rate, and integrin-ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid-matrix interactions and potential patient-specific optimization. Organoid formation in HELP materials is most robust in gels with stiffer moduli (G' ≈ 1 kPa), slower stress relaxation rate (t 1/2 ≈ 18 h), and higher integrin ligand concentration (0.5 × 10-3-1 × 10-3 m RGD peptide). This material provides a promising in vitro model for further understanding intestinal development and disease in humans and a reproducible, biodegradable, minimal matrix with no animal-derived products or synthetic polyethylene glycol for potential clinical translation.
    Keywords:  3D cell culture; adult stem cells; engineered biomaterial; extracellular matrix; intestinal organoid
    DOI:  https://doi.org/10.1002/advs.202004705
  8. BMC Biol. 2021 May 25. 19(1): 107
       BACKGROUND: The anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy of anti-PD-1/PD-L1 therapy. TGF-β has been shown to contribute to T cell exclusion, and anti-TGF-β improves anti-PD-L1 efficacy in vivo. However, TGF-β inhibition has frequently been shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-β blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 blockade, the transcriptional programs associated with PD-L1 and/or TGF-β blockade in the tumor microenvironment should be further elucidated.
    RESULTS: We used single-cell RNA sequencing in a mouse model to characterize the transcriptomic effects of PD-L1 and/or TGF-β blockade on nearly 30,000 single cells in the tumor and surrounding microenvironment. Combination treatment led to upregulation of immune response genes, including multiple chemokine genes such as CCL5, in macrophages, and downregulation of extracellular matrix genes in fibroblasts. Analysis of publicly available tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with immune cell infiltration in various human cancers. Further investigation with in vivo models showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-tumor activity of anti-PD-L1.
    CONCLUSIONS: Taken together, our data could be leveraged translationally to complement or find alternatives to anti-PD-L1 plus anti-TGF-β combination therapy, for example through companion biomarkers, and/or to identify novel targets that could be modulated to overcome resistance.
    Keywords:  Immuno-oncology; PD-L1; TGF-β; Tumor microenvironment; scRNA-seq
    DOI:  https://doi.org/10.1186/s12915-021-01034-z
  9. Biotechnol Bioeng. 2021 May 26.
      Bioprinting three-dimensional (3D) tissue equivalents have progressed tremendously over the last decade. 3D bioprinting is currently being employed to develop larger and more physiologic tissues, and of particular interest is to generate vasculature in biofabricated tissues to aid better perfusion and transport of nutrition. Having the advantage over manual culture systems by bringing together biological scaffold materials and cells in precise 3D spatial orientation, bioprinting could assist in placing endothelial cells in specific spatial locations within a 3D matrix to promote vessel formation at these predefined areas. Hence, in the present study we investigated the use of bioprinting to generate tissue-level capillary-like networks in biofabricated tissue constructs. First, we developed a bioink using collagen type-1 supplemented with xanthan gum (XG) as a thickening agent. Using a commercial extrusion-based multi-head bioprinter and Collagen-XG bioink, the component cells were spatially assembled wherein, the endothelial cells were bioprinted in a lattice pattern and sandwiched between bioprinted fibroblasts layers. 3D bioprinted constructs thus generated were stable, and maintained structural shape and form. Post-print culture of the bioprinted tissues resulted in endothelial sprouting and formation of interconnected capillary-like networks within the lattice pattern and between the fibroblast layers. Bioprinter-assisted spatial placement of endothelial cells resulted in fabrication of patterned prevascularized constructs that enables potential regenerative applications in the future. This article is protected by copyright. All rights reserved.
    Keywords:  additive manufacturing; bioink; bioprinting; stem cells; tissue engineering; vascularized tissue
    DOI:  https://doi.org/10.1002/bit.27838
  10. Nat Immunol. 2021 Jun;22(6): 746-756
      T cell exhaustion presents one of the major hurdles to cancer immunotherapy. Among exhausted CD8+ tumor-infiltrating lymphocytes, the terminally exhausted subset contributes directly to tumor cell killing owing to its cytotoxic effector function. However, this subset does not respond to immune checkpoint blockades and is difficult to be reinvigorated with restored proliferative capacity. Here, we show that a half-life-extended interleukin-10-Fc fusion protein directly and potently enhanced expansion and effector function of terminally exhausted CD8+ tumor-infiltrating lymphocytes by promoting oxidative phosphorylation, a process that was independent of the progenitor exhausted T cells. Interleukin-10-Fc was a safe and highly efficient metabolic intervention that synergized with adoptive T cell transfer immunotherapy, leading to eradication of established solid tumors and durable cures in the majority of treated mice. These findings show that metabolic reprogramming by upregulating mitochondrial pyruvate carrier-dependent oxidative phosphorylation can revitalize terminally exhausted T cells and enhance the response to cancer immunotherapy.
    DOI:  https://doi.org/10.1038/s41590-021-00940-2
  11. Front Immunol. 2021 ;12 633205
      The tumor microenvironment (TME) is a complex and heterogeneous environment composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells play a vital role in fighting tumors, but chronic stimulation and immunosuppression in the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact with innate and adaptive immune cells and play a crucial role in negatively regulating the immune response to tumors. This review discusses MDSC-mediated NK cell regulation within the TME, focusing on critical cellular and molecular interactions. We review current strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy could be improved.
    Keywords:  cancer; myeloid derived suppressor cells; natural killer cell immunotherapy; natural killer cells; tumor mircroenvironment
    DOI:  https://doi.org/10.3389/fimmu.2021.633205
  12. Proc Natl Acad Sci U S A. 2021 Jun 01. pii: e2020057118. [Epub ahead of print]118(22):
      The immunosuppressive and hypoxic tumor microenvironment (TME) remains a major obstacle to impede cancer immunotherapy. Here, we showed that elevated levels of Delta-like 1 (DLL1) in the breast and lung TME induced long-term tumor vascular normalization to alleviate tumor hypoxia and promoted the accumulation of interferon γ (IFN-γ)-expressing CD8+ T cells and the polarization of M1-like macrophages. Moreover, increased DLL1 levels in the TME sensitized anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA4) treatment in its resistant tumors, resulting in tumor regression and prolonged survival. Mechanically, in vivo depletion of CD8+ T cells or host IFN-γ deficiency reversed tumor growth inhibition and abrogated DLL1-induced tumor vascular normalization without affecting DLL1-mediated macrophage polarization. Together, these results demonstrate that elevated DLL1 levels in the TME promote durable tumor vascular normalization in a CD8+ T cell- and IFN-γ-dependent manner and potentiate anti-CTLA4 therapy. Our findings unveil DLL1 as a potential target to persistently normalize the TME to facilitate cancer immunotherapy.
    Keywords:  Delta-like 1; cancer immunotherapy; long-term tumor vascular normalization; tumor microenvironment
    DOI:  https://doi.org/10.1073/pnas.2020057118
  13. Cancer Res. 2021 May 28. pii: canres.3929.2020. [Epub ahead of print]
      Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with few effective therapeutic options. PDA is characterized by an extensive fibroinflammatory stroma that includes abundant infiltrating immune cells. Tumor-associated macrophages (TAM) are prevalent within the stroma and are key drivers of immunosuppression. TAMs in human and murine PDA are characterized by elevated expression of apolipoprotein E (ApoE), an apolipoprotein that mediates cholesterol metabolism and has known roles in cardiovascular and Alzheimer's disease but no known role in PDA. We report here that ApoE is also elevated in peripheral blood monocytes in PDA patients, and plasma ApoE protein levels stratify patient survival. Orthotopic implantation of mouse PDA cells into syngeneic wild-type or in ApoE-/- mice showed reduced tumor growth in ApoE-/- mice. Histological and mass cytometric (CyTOF) analysis of these tumors showed an increase in CD8+ T cells in tumors in ApoE-/- mice. Mechanistically, ApoE induced pancreatic tumor cell expression of Cxcl1 and Cxcl5, known immunosuppressive factors, through LDL receptor and NF-kB signaling. Taken together, this study reveals a novel immunosuppressive role of ApoE in the PDA microenvironment.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-3929
  14. Nat Commun. 2021 May 28. 12(1): 3229
      Radiotherapy (RT)-induced tumoricidal immunity is severely limited when tumors are well-established. Here, we report that depleting SIRPα on intratumoral macrophages augments efficacy of RT to eliminate otherwise large, treatment-resistant colorectal (MC38) and pancreatic (Pan02 and KPC) tumors, inducing complete abscopal remission and long-lasting humoral and cellular immunity that prevent recurrence. SIRPα-deficient macrophages activated by irradiated tumor-released DAMPs exhibit robust efficacy and orchestrate an anti-tumor response that controls late-stage tumors. Upon RT-mediated activation, intratumoral SIRPα-deficient macrophages acquire potent proinflammatory features and conduct immunogenic antigen presentation that confer a tumoricidal microenvironment highly infiltrated by tumor-specific cytotoxic T cells, NK cells and inflammatory neutrophils, but with limited immunosuppressive regulatory T cells, myeloid derived suppressor cells and post-radiation wound-healing. The results demonstrate that SIRPα is a master regulator underlying tumor resistance to RT and provide proof-of-principle for SIRPα-deficient macrophage-based therapies to treat a broad spectrum of cancers, including those at advanced stages with low immunogenicity and metastases.
    DOI:  https://doi.org/10.1038/s41467-021-23442-z
  15. J Cell Mol Med. 2021 May 25.
      A small percentage of data obtained from animal/2D culture models can be translated to humans. Therefore, there is a need to using native tumour microenvironment mimicking models to improve preclinical screening and reduce this attrition rate. For this purpose, currently, the utilization of organoids is expanding. Tumour organoids can recapitulate tumour microenvironment that is including cancer cells and non-neoplastic host components. Indeed, tumour organoids, both phenotypically and genetically, resemble the tumour tissue that originated from it. The unique properties of the tumour microenvironment can significantly affect drug response and cancer progression. In this review, we will discuss about various organoid culture strategies for modelling the tumour immune microenvironment, their applications and advantages in cancer research such as testing cancer immunotherapeutics, developing novel approaches for personalized medicine, testing drug toxicity, drug screening, study cancer initiation and progression, and we will also review the limitations of organoid culture systems.
    Keywords:  cancer; drug screening; immunotherapy; organoid; personalized medicine; tumour microenvironment
    DOI:  https://doi.org/10.1111/jcmm.16578
  16. EMBO Mol Med. 2021 May 25. e13502
      Pancreatic ductal adenocarcinoma (PDAC) patients frequently suffer from undetected micro-metastatic disease. This clinical situation would greatly benefit from additional investigation. Therefore, we set out to identify key signalling events that drive metastatic evolution from the pancreas. We searched for a gene signature that discriminate localised PDAC from confirmed metastatic PDAC and devised a preclinical protocol using circulating cell-free DNA (cfDNA) as an early biomarker of micro-metastatic disease to validate the identification of key signalling events. An unbiased approach identified, amongst actionable markers of disease progression, the PI3K pathway and a distinctive PI3Kα activation signature as predictive of PDAC aggressiveness and prognosis. Pharmacological or tumour-restricted genetic PI3Kα-selective inhibition prevented macro-metastatic evolution by hindering tumoural cell migratory behaviour independently of genetic alterations. We found that PI3Kα inhibition altered the quantity and the species composition of the produced lipid second messenger PIP3 , with a selective decrease of C36:2 PI-3,4,5-P3 . Tumoural PI3Kα inactivation prevented the accumulation of pro-tumoural CD206-positive macrophages in the tumour-adjacent tissue. Tumour cell-intrinsic PI3Kα promotes pro-metastatic features that could be pharmacologically targeted to delay macro-metastatic evolution.
    Keywords:  PI3K isoforms; pancreatic cancer; phosphoinositide; targeted therapy; tumour-stroma dialog
    DOI:  https://doi.org/10.15252/emmm.202013502
  17. Biomicrofluidics. 2021 May;15(3): 034105
      Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness.
    DOI:  https://doi.org/10.1063/5.0045197
  18. Cell Discov. 2021 May 25. 7(1): 36
      The current pathological and molecular classification of pancreatic ductal adenocarcinoma (PDAC) provides limited guidance for treatment options, especially for immunotherapy. Cancer-associated fibroblasts (CAFs) are major players of desmoplastic stroma in PDAC, modulating tumor progression and therapeutic response. Using single-cell RNA sequencing, we explored the intertumoral heterogeneity among PDAC patients with different degrees of desmoplasia. We found substantial intertumoral heterogeneity in CAFs, ductal cancer cells, and immune cells between the extremely dense and loose types of PDACs (dense-type, high desmoplasia; loose-type, low desmoplasia). Notably, no difference in CAF abundance was detected, but a novel subtype of CAFs with a highly activated metabolic state (meCAFs) was found in loose-type PDAC compared to dense-type PDAC. MeCAFs had highly active glycolysis, whereas the corresponding cancer cells used oxidative phosphorylation as a major metabolic mode rather than glycolysis. We found that the proportion and activity of immune cells were much higher in loose-type PDAC than in dense-type PDAC. Then, the clinical significance of the CAF subtypes was further validated in our PDAC cohort and a public database. PDAC patients with abundant meCAFs had a higher risk of metastasis and a poor prognosis but showed a dramatically better response to immunotherapy (64.71% objective response rate, one complete response). We characterized the intertumoral heterogeneity of cellular components, immune activity, and metabolic status between dense- and loose-type PDACs and identified meCAFs as a novel CAF subtype critical for PDAC progression and the susceptibility to immunotherapy.
    DOI:  https://doi.org/10.1038/s41421-021-00271-4