Mol Ther. 2022 Jan 13. pii: S1525-0016(22)00019-3. [Epub ahead of print]
Jiexin Li,
Guoyou Xie,
Yifan Tian,
Wanglin Li,
Yingmin Wu,
Feng Chen,
Yu Lin,
Xinyao Lin,
Shannon Wing-Ngor Au,
Jie Cao,
Weiling He,
Hongsheng Wang.
N6-methyladenosine (m6A) methylation, which is modified by METTL3/METTL14 complex, is a dominant internal modification in mammalian RNA and tightly links to cancer progression. Here, we reveal that METTL3-promoted cell migration, invasion and epithelial to mesenchymal transition (EMT) are associated with the expression and membrane localization of β-catenin (encoded by CTNNB1), as opposed to Wnt signaling activation in various types of cancer cells, including cervical, lung, and liver cancers. Specifically, METTL3 regulates the transcription, mRNA decay, translation and sub-cellular localization of β-catenin. For CTNNB1 expression, METTL3 indirectly suppresses CTNNB1 transcription via stabilizing its transcription suppressor E2F1 mRNA; deposition of 5'UTR m6A in CTNNB1 promotes its decay in a content-dependent manner via YTHDF2 recognition; 5'UTR m6A in CTNNB1 suppresses its translation efficiency, while global METTL3 level controls the canonical and non-canonical translation of CTNNB1, which is probably associated with the interaction between YTHDF1 and eIF4E1/eIF4E3. For β-catenin translocation, METTL3 represses membrane localization of β-catenin and its interaction with E-Cadherin by downregulating c-Met kinase, leading to the inhibition of cell motility. In vitro, in vivo and clinical analysis confirm the essential roles of β-catenin and its expression regulators in cancer cell dissemination. The findings not only expand our understanding of m6A modification and its roles in gene expression and subcellular localization of targets, but also suggest that METTL3/β-catenin axis might be a potential target to inhibit cancer metastasis.