bims-tucedo Biomed News
on Tumor cell dormancy
Issue of 2021‒04‒25
twenty-six papers selected by
Isabel Puig Borreil
Vall d’Hebron Institute of Oncology


  1. Cancer Cell. 2021 Apr 05. pii: S1535-6108(21)00167-7. [Epub ahead of print]
      The intestinal microbiota promote colorectal cancer, but their role in metastasis is poorly defined. In this issue of Cancer Cell, Bertocchi et al. report that intratumoral bacteria disrupt the gut vascular barrier, causing bacterial dissemination to the liver and the formation of a premetastatic niche, favoring recruitment of metastatic cells.
    DOI:  https://doi.org/10.1016/j.ccell.2021.03.009
  2. Dev Cell. 2021 Apr 19. pii: S1534-5807(21)00269-0. [Epub ahead of print]56(8): 1077-1079
      Selective pressure and signals from the tissue microenvironment drive metastasis and determine the survival of metastatic tumor cells at distant organs. Zhang et al. and Bado et al. apply CRISPR-mediated evolving barcode technology to elucidate the role of the bone microenvironment in the evolution of breast cancer metastasis.
    DOI:  https://doi.org/10.1016/j.devcel.2021.03.029
  3. Nat Rev Clin Oncol. 2021 Apr 19.
      Bone metastases are a frequent and severe complication of advanced-stage cancers. Breast and prostate cancers, the most common malignancies in women and men, respectively, have a particularly high propensity to metastasize to bone. Conceptually, circulating tumour cells (CTCs) in the bloodstream and disseminated tumour cells (DTCs) in the bone marrow provide a snapshot of the dissemination and colonization process en route to clinically apparent bone metastases. Many cell types that constitute the bone microenvironment, including osteoblasts, osteocytes, osteoclasts, adipocytes, endothelial cells, haematopoietic stem cells and immune cells, engage in a dialogue with tumour cells. Some of these cells modify tumour biology, while others are disrupted and out-competed by tumour cells, thus leading to distinct phases of tumour cell migration, dormancy and latency, and therapy resistance and progression to overt bone metastases. Several current bone-protective therapies act by interrupting these interactions, mainly by targeting tumour cell-osteoclast interactions. In this Review, we describe the functional roles of the bone microenvironment and its components in the initiation and propagation of skeletal metastases, outline the biology and clinical relevance of CTCs and DTCs, and discuss established and future therapeutic approaches that specifically target defined components of the bone microenvironment to prevent or treat skeletal metastases.
    DOI:  https://doi.org/10.1038/s41571-021-00499-9
  4. Cancer Discov. 2021 Apr 20. pii: candisc.1114.2020. [Epub ahead of print]
      Loss of the retinoblastoma (RB) tumor suppressor protein is a critical step in reprogramming biological networks that drive cancer progression, although mechanistic insight has been largely limited to the impact of RB loss on cell cycle regulation. Here, isogenic modeling of RB loss identified disease stage-specific rewiring of E2F1 function, providing the first-in-field mapping of the E2F1 cistrome and transcriptome after RB loss across disease progression. Biochemical and functional assessment using both in vitro and in vivo models identified an unexpected, prominent role for E2F1 in regulation of redox metabolism after RB loss, driving an increase in the synthesis of the antioxidant, glutathione, specific to advanced disease. These E2F1-dependent events resulted in protection from reactive oxygen species (ROS) in response to therapeutic intervention. On balance, these findings reveal novel pathways through which RB loss promotes cancer progression and highlight potentially new nodes of intervention for treating RB-deficient cancers.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1114
  5. Oncogene. 2021 Apr 19.
      Poorly differentiated colorectal cancer (CRC) is characterized by aggressive invasion and stromal fibroblast activation, which results in rapid progression and poor therapeutic consequences. However, the regulatory mechanism involved remains unclear. Here, we showed that ZNF37A, a member of KRAB-ZFP family, was upregulated in poorly differentiated CRCs and associated with tumor metastasis. ZNF37A enhanced the metastatic potential of multiple CRC cell lines and promoted distant metastasis in an orthotopic CRC model. Further investigation attributed the ZNF37A-exacerbated metastasis to increased extracellular TGF-β and the consequent activation of cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME). Mechanistically, ZNF37A formed a complex with KAP1 and bound to the promoter of THSD4, a TME modulator, to suppress its transcription, which is required for ZNF37A-mediated TGF-β activation and CRC metastasis. Collectively, our study indicates that ZNF37A promotes TGF-β signaling in CRC cells and activates CAFs by transcriptionally repressing THSD4 to drive CRC metastasis, implicating ZNF37A as a potential biomarker for CRC differentiation and progression.
    DOI:  https://doi.org/10.1038/s41388-021-01713-9
  6. Dev Cell. 2021 Apr 19. pii: S1534-5807(21)00205-7. [Epub ahead of print]56(8): 1100-1117.e9
      Estrogen receptor-positive (ER+) breast cancer exhibits a strong bone tropism in metastasis. How the bone microenvironment (BME) impacts ER signaling and endocrine therapy remains poorly understood. Here, we discover that the osteogenic niche transiently and reversibly reduces ER expression and activities specifically in bone micrometastases (BMMs), leading to endocrine resistance. As BMMs progress, the ER reduction and endocrine resistance may partially recover in cancer cells away from the osteogenic niche, creating phenotypic heterogeneity in macrometastases. Using multiple approaches, including an evolving barcoding strategy, we demonstrated that this process is independent of clonal selection, and represents an EZH2-mediated epigenomic reprogramming. EZH2 drives ER+ BMMs toward a basal and stem-like state. EZH2 inhibition reverses endocrine resistance. These data exemplify how epigenomic adaptation to BME promotes phenotypic plasticity of metastatic seeds, fosters intra-metastatic heterogeneity, and alters therapeutic responses. Our study provides insights into the clinical enigma of ER+ metastatic recurrences despite endocrine therapies.
    Keywords:  FGFR/EZH2 axis; barcoding; bone metastasis; bone tropism; chromatin alteration; clonal evolution; endocrine resistance; epigenomic reprogramming; osteogenic cells; stemness
    DOI:  https://doi.org/10.1016/j.devcel.2021.03.008
  7. Cell. 2021 Apr 10. pii: S0092-8674(21)00296-8. [Epub ahead of print]
      Metastasis has been considered as the terminal step of tumor progression. However, recent genomic studies suggest that many metastases are initiated by further spread of other metastases. Nevertheless, the corresponding pre-clinical models are lacking, and underlying mechanisms are elusive. Using several approaches, including parabiosis and an evolving barcode system, we demonstrated that the bone microenvironment facilitates breast and prostate cancer cells to further metastasize and establish multi-organ secondary metastases. We uncovered that this metastasis-promoting effect is driven by epigenetic reprogramming that confers stem cell-like properties on cancer cells disseminated from bone lesions. Furthermore, we discovered that enhanced EZH2 activity mediates the increased stemness and metastasis capacity. The same findings also apply to single cell-derived populations, indicating mechanisms distinct from clonal selection. Taken together, our work revealed an unappreciated role of the bone microenvironment in metastasis evolution and elucidated an epigenomic reprogramming process driving terminal-stage, multi-organ metastases.
    Keywords:  EZH2; bone metastasis; circulating tumor cells; disseminated tumor cells; epigenomic reprograming; evolving barcodes; organ tropism; plasticity; secondary metastasis; stemness
    DOI:  https://doi.org/10.1016/j.cell.2021.03.011
  8. Nat Commun. 2021 Apr 20. 12(1): 2335
      Current therapeutic options for treating colorectal cancer have little clinical efficacy and acquired resistance during treatment is common, even following patient stratification. Understanding the mechanisms that promote therapy resistance may lead to the development of novel therapeutic options that complement existing treatments and improve patient outcome. Here, we identify RAC1B as an important mediator of colorectal tumourigenesis and a potential target for enhancing the efficacy of EGFR inhibitor treatment. We find that high RAC1B expression in human colorectal cancer is associated with aggressive disease and poor prognosis and deletion of Rac1b in a mouse colorectal cancer model reduces tumourigenesis. We demonstrate that RAC1B interacts with, and is required for efficient activation of the EGFR signalling pathway. Moreover, RAC1B inhibition sensitises cetuximab resistant human tumour organoids to the effects of EGFR inhibition, outlining a potential therapeutic target for improving the clinical efficacy of EGFR inhibitors in colorectal cancer.
    DOI:  https://doi.org/10.1038/s41467-021-22531-3
  9. Nat Cancer. 2020 Dec;1(12): 1176-1187
      Venetoclax with azacitidine (ven/aza) has emerged as a promising regimen for acute myeloid leukemia (AML), with a high percentage of clinical remissions in newly diagnosed patients. However, approximately 30% of newly diagnosed and the majority of relapsed patients do not achieve remission with ven/aza. We previously reported that ven/aza efficacy is based on eradication of AML stem cells through a mechanism involving inhibition of amino acid metabolism, a process which is required in primitive AML cells to drive oxidative phosphorylation. Herein we demonstrate that resistance to ven/aza occurs via up-regulation of fatty acid oxidation (FAO), which occurs due to RAS pathway mutations, or as a compensatory adaptation in relapsed disease. Utilization of FAO obviates the need for amino acid metabolism, thereby rendering ven/aza ineffective. Pharmacological inhibition of FAO restores sensitivity to ven/aza in drug resistant AML cells. We propose inhibition of FAO as a therapeutic strategy to address ven/aza resistance.
    DOI:  https://doi.org/10.1038/s43018-020-00126-z
  10. Cancer Discov. 2021 Apr 23. pii: candisc.1809.2020. [Epub ahead of print]
      Pediatric liver cancers (PLCs) comprise diverse diseases affecting infants, children and adolescents. Despite overall good prognosis, PLCs display heterogeneous response to chemotherapy. Integrated genomic analysis of 126 pediatric liver tumors showed a continuum of driver mechanisms associated with patient age, including new targetable oncogenes. In 10% of hepatoblastoma patients, all before 3 years old, we identified a mosaic premalignant clonal expansion of cells altered at the 11p15.5 locus. Analysis of spatial and longitudinal heterogeneity revealed an important plasticity between 'Hepatocytic', 'Liver Progenitor' and 'Mesenchymal' molecular subgroups of hepatoblastoma. We showed that during chemotherapy, 'Liver Progenitor' cells accumulated massive loads of cisplatin-induced mutations with a specific mutational signature, leading to the development of heavily mutated relapses and metastases. Drug screening in PLC cell lines identified promising targets for cisplatin-resistant progenitor cells, validated in mouse xenograft experiments. These data provide new insights into cisplatin resistance mechanisms in PLC and suggest alternative therapies.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1809
  11. Proc Natl Acad Sci U S A. 2021 Apr 27. pii: e2018229118. [Epub ahead of print]118(17):
      Cancer cells can survive chemotherapy-induced stress, but how they recover from it is not known. Using a temporal multiomics approach, we delineate the global mechanisms of proteotoxic stress resolution in multiple myeloma cells recovering from proteasome inhibition. Our observations define layered and protracted programs for stress resolution that encompass extensive changes across the transcriptome, proteome, and metabolome. Cellular recovery from proteasome inhibition involved protracted and dynamic changes of glucose and lipid metabolism and suppression of mitochondrial function. We demonstrate that recovering cells are more vulnerable to specific insults than acutely stressed cells and identify the general control nonderepressable 2 (GCN2)-driven cellular response to amino acid scarcity as a key recovery-associated vulnerability. Using a transcriptome analysis pipeline, we further show that GCN2 is also a stress-independent bona fide target in transcriptional signature-defined subsets of solid cancers that share molecular characteristics. Thus, identifying cellular trade-offs tied to the resolution of chemotherapy-induced stress in tumor cells may reveal new therapeutic targets and routes for cancer therapy optimization.
    Keywords:  GCN2; metabolism; myeloma; proteasome; proteostasis
    DOI:  https://doi.org/10.1073/pnas.2018229118
  12. Nat Commun. 2021 Apr 20. 12(1): 2340
      Cancer is characterized by pervasive epigenetic alterations with enhancer dysfunction orchestrating the aberrant cancer transcriptional programs and transcriptional dependencies. Here, we epigenetically characterize human colorectal cancer (CRC) using de novo chromatin state discovery on a library of different patient-derived organoids. By exploring this resource, we unveil a tumor-specific deregulated enhancerome that is cancer cell-intrinsic and independent of interpatient heterogeneity. We show that the transcriptional coactivators YAP/TAZ act as key regulators of the conserved CRC gained enhancers. The same YAP/TAZ-bound enhancers display active chromatin profiles across diverse human tumors, highlighting a pan-cancer epigenetic rewiring which at single-cell level distinguishes malignant from normal cell populations. YAP/TAZ inhibition in established tumor organoids causes extensive cell death unveiling their essential role in tumor maintenance. This work indicates a common layer of YAP/TAZ-fueled enhancer reprogramming that is key for the cancer cell state and can be exploited for the development of improved therapeutic avenues.
    DOI:  https://doi.org/10.1038/s41467-021-22544-y
  13. Oncogene. 2021 Apr 19.
      Estrogen receptor alpha (ER)-positive breast cancer is commonly treated with endocrine therapies, including antiestrogens that bind and inhibit ER activity, and aromatase inhibitors that suppress estrogen biosynthesis to inhibit estrogen-dependent ER activity. Paradoxically, treatment with estrogens such as 17b-estradiol can also be effective against ER+ breast cancer. Despite the known efficacy of estrogen therapy, the lack of a predictive biomarker of response and understanding of the mechanism of action have contributed to its limited clinical use. Herein, we demonstrate that ER overexpression confers resistance to estrogen deprivation through ER activation in human ER+ breast cancer cells and xenografts grown in mice. However, ER overexpression and the associated high levels of ER transcriptional activation converted 17b-estradiol from a growth-promoter to a growth-suppressor, offering a targetable therapeutic vulnerability and a potential means of identifying patients likely to benefit from estrogen therapy. Since ER+ breast cancer cells and tumors ultimately developed resistance to continuous estrogen deprivation or continuous 17b-estradiol treatment, we tested schedules of alternating treatments. Oscillation of ER activity through cycling of 17b-estradiol and estrogen deprivation provided long-term control of patient-derived xenografts, offering a novel endocrine-only strategy to manage ER+ breast cancer.
    DOI:  https://doi.org/10.1038/s41388-021-01782-w
  14. Mol Cancer. 2021 Apr 19. 20(1): 70
      BACKGROUND: Cisplatin (CDDP) has become a standard-of-care treatment for muscle-invasive bladder cancer (MIBC), while chemoresistance remains a major challenge. Accumulating evidence indicates that circular RNAs (circRNAs) are discrete functional entities. However, the regulatory functions as well as complexities of circRNAs in modulating CDDP-based chemotherapy in bladder cancer are yet to be well revealed.METHODS: Through analyzing the expression profile of circRNAs in bladder cancer tissues, RNA FISH, circRNA pull-down assay, mass spectrometry analysis and RIP, circLIFR was identified and its interaction with MSH2 was confirmed. The effects of circLIFR and MSH2 on CDDP-based chemotherapy were explored by flow cytometry and rescue experiments. Co-IP and Western blot were used to investigate the molecular mechanisms underlying the functions of circLIFR and MSH2. Biological implications of circLIFR and MSH2 in bladder cancer were implemented in tumor xenograft models and PDX models.
    RESULTS: CircLIFR was downregulated in bladder cancer and expression was positively correlated with favorable prognosis. Moreover, circLIFR synergizing with MSH2, which was a mediator of CDDP sensitivity in bladder cancer cells, positively modulated sensitivity to CDDP in vitro and in vivo. Mechanistically, circLIFR augmented the interaction between MutSα and ATM, ultimately contributing to stabilize p73, which triggered to apoptosis. Importantly, MIBC with high expression of circLIFR and MSH2 was more sensitive to CDDP-based chemotherapy in tumor xenograft models and PDX models.
    CONCLUSIONS: CircLIFR could interact with MSH2 to positively modulate CDDP-sensitivity through MutSα/ATM-p73 axis in bladder cancer. CircLIFR and MSH2 might be act as promising therapeutic targets for CDDP-resistant bladder cancer.
    Keywords:  Bladder cancer; CDDP; CircLIFR; MSH2
    DOI:  https://doi.org/10.1186/s12943-021-01360-4
  15. Clin Cancer Res. 2021 Apr 23. pii: clincanres.0612.2021. [Epub ahead of print]
      With the advent of multi-agent chemotherapy for metastatic pancreatic cancer, subgroups of patients whose disease responds durably to treatment are emerging. Although this is wonderful progress in the face of a deadly illness, cumulative toxicities of perpetual chemotherapy over months or even years of treatment degrade quality of life and organ function, in addition to fueling eventual therapeutic resistance. The POLO trial demonstrated a benefit of maintenance olaparib compared to placebo in patients with germline pathogenic variants in BRCA1 or BRCA2. The success of this trial, albeit in a limited subset of patients, suggests that there may be opportunity to study this alternative treatment strategy as a paradigm for a broader group of patients with advanced pancreatic cancer. This article discusses the phenotypic and genotypic signatures of patients with pancreatic cancer that may provide the basis upon which to design rational maintenance clinical trials.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-21-0612
  16. Oncogene. 2021 Apr 21.
      Peritoneal metastasis is a common form of metastasis among advanced gastric cancer patients. In this study, we reported the identification of LIM domain kinase 1 (LIMK1) as a promoter of gastric cancer peritoneal metastasis, and its potential to be a therapeutic target of dabrafenib (DAB). Using transcriptomic sequencing of paired gastric cancer peritoneal metastasis, primary tumors, and normal gastric tissues, we first unveiled that LIMK1 is selectively up-regulated in metastatic tumors. Increased LIMK1 in gastric cancer peritoneal metastasis was validated by immunohistochemistry analysis of an independent patient cohort. In vitro functional studies demonstrated that LIMK1 knockout or knockdown significantly inhibited cell migration and invasion of gastric cancer cells. LIMK1 knockout also abrogated peritoneal and liver metastases of gastric cancer cells in nude mice in vivo. Dabrafenib, a small molecule targeting LIMK1, was found to decrease cell migration and invasion of gastric cancer cells in vitro and abolish peritoneal and liver metastasis formation in vivo. Mechanistically, either LIMK1 knockout or Dabrafenib inhibited LIMK1 expression and phosphorylation of its downstream target cofilin. Taken together, our results demonstrated that LIMK1 functions as a metastasis promoter in gastric cancer by inhibiting LIMK1-p-cofilin and that Dabrafenib has the potential to serve as a novel treatment for gastric cancer peritoneal metastasis.
    DOI:  https://doi.org/10.1038/s41388-021-01656-1
  17. Nat Commun. 2021 Apr 19. 12(1): 2327
      Resistance to DNA-damaging agents is a significant cause of treatment failure and poor outcomes in oncology. To identify unrecognized regulators of cell survival we performed a whole-genome CRISPR-Cas9 screen using treatment with ionizing radiation as a selective pressure, and identified STING (stimulator of interferon genes) as an intrinsic regulator of tumor cell survival. We show that STING regulates a transcriptional program that controls the generation of reactive oxygen species (ROS), and that STING loss alters ROS homeostasis to reduce DNA damage and to cause therapeutic resistance. In agreement with these data, analysis of tumors from head and neck squamous cell carcinoma patient specimens show that low STING expression is associated with worse outcomes. We also demonstrate that pharmacologic activation of STING enhances the effects of ionizing radiation in vivo, providing a rationale for therapeutic combinations of STING agonists and DNA-damaging agents. These results highlight a role for STING that is beyond its canonical function in cyclic dinucleotide and DNA damage sensing, and identify STING as a regulator of cellular ROS homeostasis and tumor cell susceptibility to reactive oxygen dependent, DNA damaging agents.
    DOI:  https://doi.org/10.1038/s41467-021-22572-8
  18. Proc Natl Acad Sci U S A. 2021 Apr 27. pii: e2025806118. [Epub ahead of print]118(17):
      Vimentin is a cytoskeletal intermediate filament protein that plays pivotal roles in tumor initiation, progression, and metastasis, and its overexpression in aggressive cancers predicted poor prognosis. Herein described is a highly effective antitumor and antimetastatic metal complex [PtII(C^N^N)(NHC2Bu)]PF6 (Pt1a; HC^N^N = 6-phenyl-2,2'-bipyridine; NHC= N-heterocyclic carbene) that engages vimentin via noncovalent binding interactions with a distinct orthogonal structural scaffold. Pt1a displays vimentin-binding affinity with a dissociation constant of 1.06 µM from surface plasmon resonance measurements and fits into a pocket between the coiled coils of the rod domain of vimentin with multiple hydrophobic interactions. It engages vimentin in cellulo, disrupts vimentin cytoskeleton, reduces vimentin expression in tumors, suppresses xenograft growth and metastasis in different mouse models, and is well tolerated, attributable to biotransformation to less toxic and renal-clearable platinum(II) species. Our studies uncovered the practical therapeutic potential of platinum(II)‒NHC complexes as effective targeted chemotherapy for combating metastatic and cisplatin-resistant cancers.
    Keywords:  N-heterocyclic carbene; antimetastasis; metabolism; platinum; vimentin
    DOI:  https://doi.org/10.1073/pnas.2025806118
  19. Nat Commun. 2021 Apr 20. 12(1): 2328
      Pancreatic ductal adenocarcinoma (PDAC) has a collagen-rich dense extracellular matrix (ECM) that promotes malignancy of cancer cells and presents a barrier for drug delivery. Data analysis of our published mass spectrometry (MS)-based studies on enriched ECM from samples of progressive PDAC stages reveal that the C-terminal prodomains of fibrillar collagens are partially uncleaved in PDAC ECM, suggesting reduced procollagen C-proteinase activity. We further show that the enzyme responsible for procollagen C-proteinase activity, bone morphogenetic protein1 (BMP1), selectively suppresses tumor growth and metastasis in cells expressing high levels of COL1A1. Although BMP1, as a secreted proteinase, promotes fibrillar collagen deposition from both cancer cells and stromal cells, only cancer-cell-derived procollagen cleavage and deposition suppresses tumor malignancy. These studies reveal a role for cancer-cell-derived fibrillar collagen in selectively restraining tumor growth and suggest stratification of patients based on their tumor epithelial collagen I expression when considering treatments related to perturbation of fibrillar collagens.
    DOI:  https://doi.org/10.1038/s41467-021-22490-9
  20. Cancer Discov. 2021 Apr 23.
      Deficiency of HUSH complex component MPP8 impaired myeloid leukemia cell growth in vitro and in vivo.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2021-057
  21. Proc Natl Acad Sci U S A. 2021 Apr 27. pii: e2024258118. [Epub ahead of print]118(17):
      DDX11 encodes an iron-sulfur cluster DNA helicase required for development, mutated, and overexpressed in cancers. Here, we show that loss of DDX11 causes replication stress and sensitizes cancer cells to DNA damaging agents, including poly ADP ribose polymerase (PARP) inhibitors and platinum drugs. We find that DDX11 helicase activity prevents chemotherapy drug hypersensitivity and accumulation of DNA damage. Mechanistically, DDX11 acts downstream of 53BP1 to mediate homology-directed repair and RAD51 focus formation in manners nonredundant with BRCA1 and BRCA2. As a result, DDX11 down-regulation aggravates the chemotherapeutic sensitivity of BRCA1/2-mutated cancers and resensitizes chemotherapy drug-resistant BRCA1/2-mutated cancer cells that regained homologous recombination proficiency. The results further indicate that DDX11 facilitates recombination repair by assisting double strand break resection and the loading of both RPA and RAD51 on single-stranded DNA substrates. We propose DDX11 as a potential target in cancers by creating pharmacologically exploitable DNA repair vulnerabilities.
    Keywords:  BRCA1/2; DDX11; chemotherapy; homologous recombination; replication stress
    DOI:  https://doi.org/10.1073/pnas.2024258118
  22. Clin Cancer Res. 2021 Apr 20. pii: clincanres.4781.2020. [Epub ahead of print]
      PURPOSE: Among human cancers that harbor mutant (mt) KRas, some, but not all, are dependent on mt KRas. However, little is known about what drives KRas dependency.EXPERIMENTAL DESIGN: Global phosphoproteomics, screening of a chemical library of FDA drugs and genome-wide CRISPR/Cas9 viability database analysis were used to identify vulnerabilities of KRAS dependency.
    RESULTS: Global phosphoproteomics revealed that KRas dependency is driven by a cyclin dependent kinase (CDK) network. CRISPR/Cas9 viability database analysis revealed that, in mt KRas-driven pancreatic cancer cells, knocking out the cell cycle regulators CDK1 or CDK2 or the transcriptional regulators CDK7 or CDK9 was as effective as knocking out KRas. Furthermore, screening of a library of FDA drugs identified AT7519, a CDK 1, 2, 7, and 9 inhibitor, as a potent inducer of apoptosis in mt KRas-dependent, but not in mt KRas-independent, human cancer cells. In vivo AT7519 inhibited the phosphorylation of CDK1, 2, 7 and 9 substrates and suppressed growth of xenografts from 5 pancreatic cancer patients. AT7519 also abrogated mt KRas and mt p53 primary and metastatic pancreatic cancer in 3D organoids from 2 patients, 3D co-cultures from 8 patients, and mouse 3D organoids from PanIN, primary and metastatic tumors.
    CONCLUSION: A link between CDK hyperactivation and mt KRas dependency was uncovered and pharmacologically-exploited to abrogate mt KRas-driven pancreatic cancer in highly relevant models, warranting clinical investigations of AT7519 in pancreatic cancer patients.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-20-4781
  23. Cancer Discov. 2021 Apr 21. pii: candisc.1213.2020. [Epub ahead of print]
      Cancer dependency maps, which use CRISPR/Cas9 depletion screens to profile the landscape of genetic dependencies in hundreds of cancer cell lines, have identified context-specific dependencies that could be therapeutically exploited. An ideal therapy is both lethal and precise, but these depletion screens cannot readily distinguish between gene effects that are cytostatic or cytotoxic. Here, we employ a diverse panel of functional genomic screening assays to identify NXT1 as a selective and rapidly lethal in vivo-relevant genetic dependency in MYCN-amplified neuroblastoma. NXT1 heterodimerizes with NXF1 and together they form the principle mRNA nuclear export machinery. We describe a previously unrecognized mechanism of synthetic lethality between NXT1 and its paralog NXT2: their common essential binding partner NXF1 is lost only in the absence of both. We propose a potential therapeutic strategy for tumor-selective elimination of a protein that, if targeted directly, is expected to cause widespread toxicity.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1213
  24. Cancer Cell. 2021 Apr 16. pii: S1535-6108(21)00168-9. [Epub ahead of print]
      Abnormal activity of the core cell-cycle machinery is seen in essentially all tumor types and represents a driving force of tumorigenesis. Recent studies revealed that cell-cycle proteins regulate a wide range of cellular functions, in addition to promoting cell division. With the clinical success of CDK4/6 inhibitors, it is becoming increasingly clear that targeting individual cell-cycle components may represent an effective anti-cancer strategy. Here, we discuss the potential of inhibiting different cell-cycle proteins for cancer therapy.
    DOI:  https://doi.org/10.1016/j.ccell.2021.03.010
  25. Cancer Metastasis Rev. 2021 Apr 04.
      Mucins are high-molecular-weight glycoproteins dysregulated in aggressive cancers. The role of mucins in disease progression, tumor proliferation, and chemotherapy resistance has been studied extensively. This article provides a comprehensive review of mucin's function as a physical barrier and the implication of mucin overexpression in impeded drug delivery to solid tumors. Mucins regulate the epithelial to mesenchymal transition (EMT) of cancer cells via several canonical and non-canonical oncogenic signaling pathways. Furthermore, mucins play an extensive role in enriching and maintaining the cancer stem cell (CSC) population, thereby sustaining the self-renewing and chemoresistant cellular pool in the bulk tumor. It has recently been demonstrated that mucins regulate the metabolic reprogramming during oncogenesis and cancer progression, which account for tumor cell survival, proliferation, and drug-resistance. This review article focuses on delineating mucin's role in oncogenic signaling and aberrant regulation of gene expressions, culminating in CSC maintenance, metabolic rewiring, and development of chemoresistance, tumor progression, and metastasis.
    Keywords:  Cancer stem cell; Chemoresistance; Epithelial to mesenchymal transition; Metabolic reprogramming; Metastasis; Mucins
    DOI:  https://doi.org/10.1007/s10555-021-09959-1
  26. Nucleic Acids Res. 2021 Apr 24. pii: gkab267. [Epub ahead of print]
      The eIF4E are a family of initiation factors that bind the mRNA 5' cap, regulating the proteome and the cellular phenotype. eIF4E1 mediates global translation and its activity is controlled via the PI3K/AKT/mTOR pathway. mTOR down-regulation results in eIF4E1 sequestration into an inactive complex with the 4E binding proteins (4EBPs). The second member, eIF4E2, regulates the translatome during hypoxia. However, the exact function of the third member, eIF4E3, has remained elusive. We have dissected its function using a range of techniques. Starting from the observation that it does not interact with 4EBP1, we demonstrate that eIF4E3 recruitment into an eIF4F complex occurs when Torin1 inhibits the mTOR pathway. Ribo-seq studies demonstrate that this complex (eIF4FS) is translationally active during stress and that it selects specific mRNA populations based on 5' TL (UTR) length. The interactome reveals that it associates with cellular proteins beyond the cognate initiation factors, suggesting that it may have 'moon-lighting' functions. Finally, we provide evidence that cellular metabolism is altered in an eIF4E3 KO background but only upon Torin1 treatment. We propose that eIF4E3 acts as a second branch of the integrated stress response, re-programming the translatome to promote 'stress resistance' and adaptation.
    DOI:  https://doi.org/10.1093/nar/gkab267