bims-tubesc Biomed News
on Molecular mechanisms in tuberous sclerosis
Issue of 2023–03–19
seven papers selected by




  1. Rev Neurol (Paris). 2023 Mar 09. pii: S0035-3787(23)00867-6. [Epub ahead of print]
      Dysregulation of the mTOR pathway is now well documented in several neurodevelopmental disorders associated with epilepsy. Mutations of mTOR pathway genes are involved in tuberous sclerosis complex (TSC) as well as in a range of cortical malformations from hemimegalencephaly (HME) to type II focal cortical dysplasia (FCD II), leading to the concept of "mTORopathies" (mTOR pathway-related malformations). This suggests that mTOR inhibitors (notably rapamycin (sirolimus), and everolimus) could be used as antiseizure medication. In this review, we provide an overview of pharmacological treatments targeting the mTOR pathway for epilepsy based on lectures from the ILAE French Chapter meeting in October 2022 in Grenoble. There is strong preclinical evidence for the antiseizure effects of mTOR inhibitors in TSC and cortical malformation mouse models. There are also open studies on the antiseizure effects of mTOR inhibitors, as well as one phase III study showing the antiseizure effect of everolimus in TSC patients. Finally, we discuss to which extent mTOR inhibitors might have properties beyond the antiseizure effect on associated neuropsychiatric comorbidities. We also discuss a new way of treatment on the mTOR pathways.
    Keywords:  Epilepsy; Everolimus; Focal cortical dysplasia; Rapamycin; Sirolimus; Tuberous sclerosis complex; mTOR signaling pathway
    DOI:  https://doi.org/10.1016/j.neurol.2022.12.007
  2. JCI Insight. 2023 Mar 16. pii: e166850. [Epub ahead of print]
      Tuberous Sclerosis Complex (TSC) is characterized by multi-system low-grade neoplasia involving the lung, kidneys, brain, and heart. Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease affecting almost exclusively women. TSC and LAM are both caused by mutations in TSC1 and TSC2 that results in mTORC1 hyperactivation. Here, we report that single-cell RNA sequencing of LAM lungs identified activation of genes in the sphingolipid biosynthesis pathway. Accordingly, the expression of acid ceramidase (ASAH1) and dihydroceramide desaturase (DEGS1), key enzymes controlling sphingolipid and ceramide metabolism, was significantly increased in TSC2-null cells. TSC2 negatively regulated the biosynthesis of tumorigenic sphingolipids, and suppression of ASAH1 by shRNA or the inhibitor ARN14976 (17a) resulted in markedly decreased TSC2-null cell viability. In vivo, 17a significantly decreased the growth of TSC2-null cell derived mouse xenografts and short-term lung colonization by TSC2-null cells. Combined rapamycin and 17a treatment synergistically inhibited renal cystadenoma growth in Tsc2+/- mice, consistent with increased ASAH1 expression and activity being rapamycin insensitive. Collectively, the present study identifies rapamycin-insensitive ASAH1 upregulation in TSC2-null cells and tumors and provides evidence that targeting aberrant sphingolipid biosynthesis pathways has potential therapeutic value in mTORC1-hyperactive neoplasms including TSC and LAM.
    Keywords:  Cell Biology; Metabolism; Molecular biology; Mouse models; Tumor suppressors
    DOI:  https://doi.org/10.1172/jci.insight.166850
  3. Biochem Soc Trans. 2023 Mar 16. pii: BST20210038. [Epub ahead of print]
      The Rag GTPases are an evolutionarily conserved family that play a crucial role in amino acid sensing by the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 is often referred to as the master regulator of cell growth. mTORC1 hyperactivation is observed in multiple diseases such as cancer, obesity, metabolic disorders, and neurodegeneration. The Rag GTPases sense amino acid levels and form heterodimers, where RagA or RagB binds to RagC or RagD, to recruit mTORC1 to the lysosome where it becomes activated. Here, we review amino acid signaling to mTORC1 through the Rag GTPases.
    Keywords:  Rag GTPases; amino acid sensing; mTORC1; signaling
    DOI:  https://doi.org/10.1042/BST20210038
  4. Acta Physiol (Oxf). 2023 Mar 12. e13960
      The mammalian target of rapamycin (mTOR) signalling pathway is crucial in maintaining cell growth and metabolism. The mTOR protein kinase constitutes the catalytic subunit of two multimeric protein complexes called mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). As such, this pathway is indispensable for many organs, including the kidney. Since its discovery, mTOR has been associated with major renal disorders such as acute kidney injury, chronic kidney disease, and polycystic kidney disease. On top of that, emerging studies using pharmacological interventions and genetic disease models have unveiled mTOR role in renal tubular ion handling. Along the tubule, mTORC1 and mTORC2 subunits are ubiquitously expressed at mRNA level. Nevertheless, at the protein level, current studies suggest that a tubular segment-specific balance between mTORC1 and mTORC2 exist. In the proximal tubule, mTORC1 regulates nutrients transports through various transporters located in this segment. On the other hand, in the thick ascending limb of the loop of Henle, both complexes play a role in regulating NKCC2 expression and activity. Lastly, in the principal cells of the collecting duct, mTORC2 determines Na+ reabsorption and K+ excretion by regulating of SGK1 activation. Altogether, these studies establish the relevance of the mTOR signalling pathway in the pathophysiology of tubular solute transport. Despite extensive studies on the effectors of mTOR, the upstream activators of mTOR signalling remains elusive in most nephron segments. Further understanding of the role of growth factor signalling and nutrient sensing is essential to establish the exact role of mTOR in kidney physiology.
    Keywords:  Mammalian target of rapamycin; electrolyte transport; kidney physiology; tubular disorder
    DOI:  https://doi.org/10.1111/apha.13960
  5. Clin Immunol. 2023 Mar 11. pii: S1521-6616(23)00067-0. [Epub ahead of print]249 109288
       OBJECTIVE: This study aims to explore the association between glomerular mammalian target of rapamycin complex 1 (mTORC1) pathway activation and crescents' degree in lupus nephritis (LN) patients.
    METHODS: A total of 159 biopsy-proven LN patients were enrolled in this retrospective study. The clinical and pathological data of them were collected at the time of renal biopsy. mTORC1 pathway activation was measured by immunohistochemistry, expressed by the mean optical density (MOD) of p-RPS6 (ser235/236), and multiplexed immunofluorescence. The association of mTORC1 pathway activation with clinico-pathological features especially renal crescentic lesions, and the composite outcomes in LN patients was further analyzed.
    RESULTS: mTORC1 pathway activation could be detected in the crescentic lesions and was positively correlated with the percentage of crescents (r = 0.479, P < 0.001) in LN patients. Subgroup analysis showed mTORC1 pathway was more activated in patients with cellular or fibrocellular crescentic lesions (P < 0.001), but not fibrous crescentic lesions (P = 0.270). The optimal cutoff value of the MOD of p-RPS6 (ser235/236) was 0.0111299 for predicting the presence of cellular-fibrocellular crescents in >7.39% of the glomeruli by the receiver operating characteristic curve. Cox regression survival analysis showed that mTORC1 pathway activation was an independent risk factor for the worse outcome (defined by composite endpoints of death, end-stage renal disease and a decrease of >30% in eGFR from baseline).
    CONCLUSION: Activation of mTORC1 pathway was closely associated with the cellular-fibrocellular crescentic lesions and could be a prognostic marker in LN patients.
    Keywords:  Crescent; Lupus nephritis; mTORC1
    DOI:  https://doi.org/10.1016/j.clim.2023.109288
  6. Neurobiol Dis. 2023 Mar 11. pii: S0969-9961(23)00088-8. [Epub ahead of print]180 106074
      As cells divide during development, errors in DNA replication and repair lead to somatic mosaicism - a phenomenon in which different cell lineages harbor unique constellations of genetic variants. Over the past decade, somatic variants that disrupt mTOR signaling, protein glycosylation, and other functions during brain development have been linked to cortical malformations and focal epilepsy. More recently, emerging evidence points to a role for Ras pathway mosaicism in epilepsy. The Ras family of proteins is a critical driver of MAPK signaling. Disruption of the Ras pathway is most known for its association with tumorigenesis; however, developmental disorders known as RASopathies commonly have a neurological component that sometimes includes epilepsy, offering evidence for Ras involvement in brain development and epileptogenesis. Brain somatic variants affecting the Ras pathway (e.g., KRAS, PTPN11, BRAF) are now strongly associated with focal epilepsy through genotype-phenotype association studies as well as mechanistic evidence. This review summarizes the Ras pathway and its involvement in epilepsy and neurodevelopmental disorders, focusing on new evidence regarding Ras pathway mosaicism and the potential future clinical implications.
    Keywords:  Epilepsy; Neurodevelopment; RAS signaling; Somatic mosaicism
    DOI:  https://doi.org/10.1016/j.nbd.2023.106074