bims-tubesc Biomed News
on Molecular mechanisms in tuberous sclerosis
Issue of 2021–08–08
eight papers selected by




  1. Ther Adv Neurol Disord. 2021 ;14 17562864211031100
      Tuberous sclerosis complex (TSC) is a rare genetic disorder caused by mutations in the TSC1 or TSC2 genes, which encode proteins that antagonise the mammalian isoform of the target of rapamycin complex 1 (mTORC1) - a key mediator of cell growth and metabolism. TSC is characterised by the development of benign tumours in multiple organs, together with neurological manifestations including epilepsy and TSC-associated neuropsychiatric disorders (TAND). Epilepsy occurs frequently and is associated with significant morbidity and mortality; however, the management is challenging due to the intractable nature of the seizures. Preventative epilepsy treatment is a key aim, especially as patients with epilepsy may be at a higher risk of developing severe cognitive and behavioural impairment. Vigabatrin given preventatively reduces the risk and severity of epilepsy although the benefits for TAND are inconclusive. These promising results could pave the way for evaluating other treatments in a preventative capacity, especially those that may address the underlying pathophysiology of TSC, including everolimus, cannabidiol and the ketogenic diet (KD). Everolimus is an mTOR inhibitor approved for the adjunctive treatment of refractory TSC-associated seizures that has demonstrated significant reductions in seizure frequency compared with placebo, improvements that were sustained after 2 years of treatment. Highly purified cannabidiol, recently approved in the US as Epidiolex® for TSC-associated seizures in patients ⩾1 years of age, and the KD, may also participate in the regulation of the mTOR pathway. This review focusses on the pivotal clinical evidence surrounding these potential targeted therapies that may form the foundation of precision medicine for TSC-associated epilepsy, as well as other current treatments including anti-seizure drugs, vagus nerve stimulation and surgery. New future therapies are also discussed, together with the potential for preventative treatment with targeted therapies. Due to advances in understanding the molecular genetics and pathophysiology, TSC represents a prototypic clinical syndrome for studying epileptogenesis and the impact of precision medicine.
    Keywords:  Cannabidiol; epilepsy; epileptogenesis; everolimus; ketogenic diet; mTORC1; tuberous sclerosis complex; TSC-associated neuropsychiatric disorders
    DOI:  https://doi.org/10.1177/17562864211031100
  2. Eur Respir Rev. 2021 Sep 30. pii: 200348. [Epub ahead of print]30(161):
      Tuberous sclerosis complex (TSC) is a rare multisystem genetic disorder affecting almost all organs with no sex predominance. TSC has an autosomal-dominant inheritance and is caused by a heterozygous mutation in either the TSC1 or TSC2 gene leading to hyperactivation of the mammalian target of rapamycin (mTOR). TSC is associated with several pulmonary manifestations including lymphangioleiomyomatosis (LAM), multifocal micronodular pneumocyte hyperplasia (MMPH) and chylous effusions. LAM is a multisystem disorder characterised by cystic destruction of lung parenchyma, and may occur in either the setting of TSC (TSC-LAM) or sporadically (S-LAM). LAM occurs in 30-40% of adult females with TSC at childbearing age and is considered a nonmalignant metastatic neoplasm of unknown origin. TSC-LAM is generally milder and, unlike S-LAM, may occur in males. It manifests as multiple, bilateral, diffuse and thin-walled cysts with normal intervening lung parenchyma on chest computed tomography. LAM is complicated by spontaneous pneumothoraces in up to 70% of patients, with a high recurrence rate. mTOR inhibitors are the treatment of choice for LAM with moderately impaired lung function or chylous effusion. MMPH, manifesting as multiple solid and ground-glass nodules on high-resolution computed tomography, is usually harmless with no need for treatment.
    DOI:  https://doi.org/10.1183/16000617.0348-2020
  3. BMJ Case Rep. 2021 Aug 03. pii: e243380. [Epub ahead of print]14(8):
      A 28-year-old woman came for non-traumatic right flank pain with hypotension and right flank mass. She had multiple hyperpigmented skin papules located on the centre area of her face, and angiomas on her toes. She was anaemic and had a blood transfusion on top of aggressive fluid resuscitation. Abdominal CT showed bilaterally enlarged kidneys and fluid collection in the right perirenal space (haemorrhage). The consideration was an angiomyolipoma in spontaneous perinephric haemorrhage. We considered tuberous sclerosis complex (TSC) and did genetic testing. Results revealed mutations in the TSC2 gene, consistent with the diagnosis of TSC. No immediate surgical plans were considered at that time. She opted to be discharged against medical advice and was scheduled for a close outpatient follow-up. The patient followed up after 2 weeks, already on sirolimus 2 mg once daily. She reported improved overall well-being and a decrease in the flank mass size.
    Keywords:  gene therapy; genetic screening / counselling; oncology
    DOI:  https://doi.org/10.1136/bcr-2021-243380
  4. Pediatr Neurol. 2021 Jul 06. pii: S0887-8994(21)00141-7. [Epub ahead of print]123 1-9
    TACERN study group
       BACKGROUND: Epilepsy in tuberous sclerosis complex (TSC) typically presents with early onset, multiple seizure types, and intractability. However, variability is observed among individuals. Here, detailed individual data on seizure characteristics collected prospectively during early life were used to define epilepsy profiles in this population.
    METHODS: Children aged zero to 36 months were followed longitudinally. Caregivers kept daily seizure diaries, including onset and daily counts for each seizure type. Patients with >70% seizure diary completion and >365 diary days were included. Developmental outcomes at 36 months were compared between subgroups.
    RESULTS: Epilepsy was seen in 124 of 156 (79%) participants. Seizure onset occurred from zero to 29.5 months; 93% had onset before age 12 months. Focal seizures and epileptic spasms were most common. Number of seizures (for median 897 days) ranged from 1 to 9128. Hierarchical clustering based on six metrics of seizure burden (age of onset, total seizures, ratio of seizure days to nonseizure days, seizures per seizure day, and worst seven- and 30-day stretches) revealed two distinct groups with broadly favorable and unfavorable epilepsy profiles. Subpopulations within each group showed clinically meaningful differences in seizure burden. Groups with higher seizure burden had worse developmental outcomes at 36 months.
    CONCLUSIONS: Although epilepsy is highly prevalent in TSC, not all young children with TSC have the same epilepsy profile. At least two phenotypic subpopulations are discernible based on seizure burden. Early and aggressive treatments for epilepsy in TSC may be best leveraged by targeting specific subgroups based on phenotype severity.
    Keywords:  Epilepsy in infancy; Epilepsy phenotype; Epileptic spasms; Focal seizures; Seizure burden; Seizure diary; Tubers
    DOI:  https://doi.org/10.1016/j.pediatrneurol.2021.06.012
  5. Orphanet J Rare Dis. 2021 Aug 03. 16(1): 335
       BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disease with systemic manifestations, which can cause significant mortality and morbidity. Population-based epidemiological studies on TSC mortality and survival remain scarce, though several recent studies provide evidence that TSC survival rates are high and disease prognosis is fair for most patients. This study aims to estimate the life expectancy and mortality statistics in Taiwanese TSC patients, investigate prognosis and associations of TSC mortality based on demographic variables, and compare these results to past literature, especially for Asian patients.
    METHODS: Taiwanese National Health Insurance (NHI) insurees can obtain Catastrophic Illness Certificates (CIC) for certain eligible diseases to waive copayments after diagnosis by two independent physicians. CIC holders for TSC during 1997-2010 were identified from the NHI Research Database. Queries on enrollment (CIC acquisition) age, endpoint (end of query period or death) age, sex, and comorbidities were obtained. Patients were separated into cohorts (endpoint age, sex, and age of diagnosis), and analyzed accordingly.
    RESULTS: 471 patients (232 male, 239 female) were identified, of which 14 died. Compared to literature, patients showed similar demographics (age range, diagnosis age, sex distribution); similar manifestations and prevalence (epilepsy, intellectual disability, renal disease); lower disease prevalence (1 in 63,290); lower mortality (0.21% per year); and near-identical standardized mortality ratio (4.99). A cumulative mortality of 4.08% was found over 14 years, though mortality plateaued at 7 years post-enrollment, suggesting a good overall survival rate; comparable with previous studies in Asian patients. Enrollment age was a significant prognostic factor, with late-enrollment (age > 18) patients at higher risk for all-cause mortality (Hazard ratio = 6.54). Average remaining lifetime was significantly lower than the general population, and decreased with age.
    CONCLUSIONS: This study reports a population-based disease database, highlights the importance of diagnosis age in prognosis prediction, and suggests the role of renal manifestations in mortality. Furthermore, it corroborates recent TSC studies in the Asian population in terms of survival. Overall, physician vigilance, early diagnosis, and careful monitoring are beneficial for disease outcome and patient survival.
    Keywords:  Cohort study; Epidemiology; Mortality; National Health Insurance Database; Tuberous sclerosis complex
    DOI:  https://doi.org/10.1186/s13023-021-01974-3
  6. Int J Mol Sci. 2021 Jul 26. pii: 7949. [Epub ahead of print]22(15):
      Rare central nervous system (CNS) tumours represent a unique challenge. Given the difficulty of conducting dedicated clinical trials, there is a lack of therapies for these tumours supported by high quality evidence, and knowledge regarding the impact of standard treatments (i.e., surgery, radiotherapy or chemotherapy) is commonly based on retrospective studies. Recently, new molecular techniques have led to the discovery of actionable molecular alterations. The aim of this article is to review recent progress in the molecular understanding of and therapeutic options for rare brain tumours, both in children and adults. We will discuss options such as targeting the mechanistic target of rapamycin (mTOR) pathway in subependymal giant cells astrocytomas (SEGAs) of tuberous sclerosis and BRAF V600E mutation in rare glial (pleomorphic xanthoastrocytomas) or glioneuronal (gangliogliomas) tumours, which are a model of how specific molecular treatments can also favourably impact neurological symptoms (such as seizures) and quality of life. Moreover, we will discuss initial experiences in targeting new molecular alterations in gliomas, such as isocitrate dehydrogenase (IDH) mutations and neurotrophic tyrosine receptor kinase (NTRK) fusions, and in medulloblastomas such as the sonic hedgehog (SHH) pathway.
    Keywords:  molecular neuro-oncology; rare brain tumours; targeted therapies
    DOI:  https://doi.org/10.3390/ijms22157949
  7. Mucosal Immunol. 2021 Aug 02.
      Innate lymphoid cells (ILCs) have a protective immune function at mucosal tissues but can also contribute to immunopathology. Previous work has shown that the serine/threonine kinase mammalian target of rapamycin complex 1 (mTORC1) is involved in generating protective ILC3 cytokine responses during bacterial infection. However, whether mTORC1 also regulates IFN-γ-mediated immunopathology has not been investigated. In addition, the role of mTORC2 in ILC3s is unknown. Using mice specifically defective for either mTORC1 or mTORC2 in ILC3s, we show that both mTOR complexes regulate the maintenance of ILC3s at steady state and pathological immune response during colitis. mTORC1 and to a lesser extend mTORC2 promote the proliferation of ILC3s in the small intestine. Upon activation, intestinal ILC3s produce less IFN-γ in the absence of mTOR signaling. During colitis, loss of both mTOR complexes in colonic ILC3s results in the reduced production of inflammatory mediators, recruitment of neutrophils and immunopathology. Similarly, treatment with rapamycin after colitis induction ameliorates the disease. Collectively, our data show a critical role for both mTOR complexes in controlling ILC3 cell numbers and ILC3-driven inflammation in the intestine.
    DOI:  https://doi.org/10.1038/s41385-021-00432-4
  8. FEBS J. 2021 Aug 06.
      The adenosine monophosphate-activated protein kinase (AMPK) is an integrative metabolic sensor that maintains energy balance at the cellular level and plays an important role in orchestrating inter-tissue metabolic signaling. AMPK regulates cell survival, metabolism and cellular homeostasis basally as well as in response to various metabolic stresses. Studies so far show that the AMPK pathway is associated with neurodegeneration and CNS pathology, but the mechanisms involved remain unclear. AMPK dysregulation has been reported in neurodegenerative diseases such as amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease and other neuropathies. AMPK activation appears to be both neuroprotective and pro-apoptotic, possibly dependent upon neural cell types, the nature of insults and the intensity and duration of AMPK activation. While embryonic brain development in AMPK null mice appears to proceed normally without any overt structural abnormalities, our recent study confirmed the full impact of AMPK loss in the postnatal and aging brain. Our studies revealed that Ampk deletion in neurons increased basal neuronal excitability and reduced latency to seizure upon stimulation. Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in the brain. AMPK's regulation of aerobic glycolysis in astrocytic metabolism warrants further deliberation, particularly glycogen turnover and shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation. In this minireview, we focus on recent advances in AMPK and energy-sensing in the brain.
    Keywords:  AMP Kinase; Astrocyte-Neuron Lactate Shuttle; Brain; Glucose metabolism; Glycolysis; Neurodevelopment
    DOI:  https://doi.org/10.1111/febs.16151