bims-tricox Biomed News
on Translation, ribosomes and COX
Issue of 2025–03–30
two papers selected by
Yash Verma, University of Zurich



  1. Biol Chem. 2025 Mar 28.
      Mitochondrial functions and biogenesis depend on the import of more than 1,000 proteins which are synthesized as precursor proteins on cytosolic ribosomes. Mitochondrial protein translocases sort the precursor proteins into the mitochondrial sub-compartments: outer and inner membrane, the intermembrane space and the matrix. The translocase of the outer mitochondrial membrane (TOM complex) constitutes the major import site for most of these precursor proteins. Defective protein translocases, premature folding of the precursor, or depletion of the membrane potential can cause clogging of the TOM channel by a precursor protein. This clogging impairs further protein import and leads to accumulation of precursor proteins in the cell that perturbates protein homeostasis, leading to proteotoxic stress in the cell. Therefore, unclogging of the translocon is critical for maintaining mitochondrial and cellular function. Ubiquitylation and AAA-ATPases play a central role in the extraction of the precursor proteins to deliver them to the proteasome for degradation. Here we summarize our understanding of the molecular mechanisms that remove such translocation-stalled precursor proteins from the translocation channel to regenerate the TOM complex for protein import.
    Keywords:  AAA ATPases; TOM complex; mitochondria; protein import; quality control; ubiquitylation
    DOI:  https://doi.org/10.1515/hsz-2025-0110
  2. Trends Cell Biol. 2025 Mar 26. pii: S0962-8924(25)00042-X. [Epub ahead of print]
      While mitochondrial dysfunction is one of the canonical hallmarks of aging, it remains only vaguely defined. Its core feature embraces defects in energy-producing molecular machinery, the mitochondrial respiratory complexes (MRCs). The causes and consequences of these defects hold research attention. In this review, we assess the lifecycle of respiratory complexes, from biogenesis to degradation, and look closely at the mechanisms that could underpin their dysfunction in aged cells. We discuss how these processes could be altered by aging and expand on the fate of MRCs in age-associated pathologies. Given the complexity behind MRC maintenance and functionality, several traits could contribute to the phenomenon known as age-associated mitochondrial dysfunction. New advances will help us better understand the fate of this machinery in aging and age-related diseases.
    Keywords:  OXPHOS; age-associated diseases; dysfunction; mitochondria; protein complexes, aging hallmarks
    DOI:  https://doi.org/10.1016/j.tcb.2025.02.008