bims-tricox Biomed News
on Translation, ribosomes and COX
Issue of 2023‒03‒26
six papers selected by
Yash Verma
University of Delhi South Campus


  1. Nucleic Acids Res. 2023 Mar 23. pii: gkad194. [Epub ahead of print]
      The chemical modification of ribosomal RNA and proteins is critical for ribosome assembly, for protein synthesis and may drive ribosome specialisation in development and disease. However, the inability to accurately visualise these modifications has limited mechanistic understanding of the role of these modifications in ribosome function. Here we report the 2.15 Å resolution cryo-EM reconstruction of the human 40S ribosomal subunit. We directly visualise post-transcriptional modifications within the 18S rRNA and four post-translational modifications of ribosomal proteins. Additionally, we interpret the solvation shells in the core regions of the 40S ribosomal subunit and reveal how potassium and magnesium ions establish both universally conserved and eukaryote-specific coordination to promote the stabilisation and folding of key ribosomal elements. This work provides unprecedented structural details for the human 40S ribosomal subunit that will serve as an important reference for unravelling the functional role of ribosomal RNA modifications.
    DOI:  https://doi.org/10.1093/nar/gkad194
  2. Nature. 2023 Mar 22.
      Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.
    DOI:  https://doi.org/10.1038/s41586-023-05817-y
  3. Semin Cell Dev Biol. 2023 Mar 22. pii: S1084-9521(23)00072-1. [Epub ahead of print]
      Cells entrust ribosomes with the critical task of identifying problematic mRNAs and facilitating their degradation. Ribosomes must communicate when they encounter and stall on an aberrant mRNA, lest they expose the cell to toxic and disease-causing proteins, or they jeopardize ribosome homeostasis and cellular translation. In recent years, ribosomal ubiquitination has emerged as a central signaling step in this process, and proteomic studies across labs and experimental systems show a myriad of ubiquitination sites throughout the ribosome. Work from many labs zeroed in on ubiquitination in one region of the small ribosomal subunit as being functionally significant, with the balance and exact ubiquitination sites determined by stall type, E3 ubiquitin ligases, and deubiquitinases. This review discusses the current literature surrounding ribosomal ubiquitination during translational stress and considers its role in committing translational complexes to decay.
    Keywords:  No-Go mRNA Decay (NGD); Nonstop mRNA Decay (NSD); Ribosome; Translation; Ubiquitin
    DOI:  https://doi.org/10.1016/j.semcdb.2023.03.009
  4. EMBO Rep. 2023 Mar 20. e55760
      Mitochondria play central roles in cellular energy production and metabolism. Most proteins required to carry out these functions are synthesized in the cytosol and imported into mitochondria. A growing number of metabolic disorders arising from mitochondrial dysfunction can be traced to errors in mitochondrial protein import. The mechanisms underlying the import of precursor proteins are commonly studied using radioactively labeled precursor proteins imported into purified mitochondria. Here, we establish a fluorescence-based import assay to analyze protein import into mitochondria. We show that fluorescently labeled precursors enable import analysis with similar sensitivity to those using radioactive precursors, yet they provide the advantage of quantifying import with picomole resolution. We adapted the import assay to a 96-well plate format allowing for fast analysis in a screening-compatible format. Moreover, we show that fluorescently labeled precursors can be used to monitor the assembly of the F1 F0 ATP synthase in purified mitochondria. Thus, we provide a sensitive fluorescence-based import assay that enables quantitative and fast import analysis.
    Keywords:  fluorescent precursor; in vitro import; mitochondria; presequence pathway; protein import
    DOI:  https://doi.org/10.15252/embr.202255760
  5. Life Sci Alliance. 2023 Jun;pii: e202201805. [Epub ahead of print]6(6):
      Cellular functionality relies on a well-balanced, but highly dynamic proteome. Dysfunction of mitochondrial protein import leads to the cytosolic accumulation of mitochondrial precursor proteins which compromise cellular proteostasis and trigger a mitoprotein-induced stress response. To dissect the effects of mitochondrial dysfunction on the cellular proteome as a whole, we developed pre-post thermal proteome profiling. This multiplexed time-resolved proteome-wide thermal stability profiling approach with isobaric peptide tags in combination with a pulsed SILAC labelling elucidated dynamic proteostasis changes in several dimensions: In addition to adaptations in protein abundance, we observed rapid modulations of the thermal stability of individual cellular proteins. Different functional groups of proteins showed characteristic response patterns and reacted with group-specific kinetics, allowing the identification of functional modules that are relevant for mitoprotein-induced stress. Thus, our new pre-post thermal proteome profiling approach uncovered a complex response network that orchestrates proteome homeostasis in eukaryotic cells by time-controlled adaptations of the abundance and the conformation of proteins.
    DOI:  https://doi.org/10.26508/lsa.202201805
  6. Nat Commun. 2023 Mar 22. 14(1): 1595
      The regulation of the informational flow from the mitochondria to the nucleus (mitonuclear communication) is not fully characterized in the heart. We have determined that mitochondrial ribosomal protein S5 (MRPS5/uS5m) can regulate cardiac function and key pathways to coordinate this process during cardiac stress. We demonstrate that loss of Mrps5 in the developing heart leads to cardiac defects and embryonic lethality while postnatal loss induces cardiac hypertrophy and heart failure. The structure and function of mitochondria is disrupted in Mrps5 mutant cardiomyocytes, impairing mitochondrial protein translation and OXPHOS. We identify Klf15 as a Mrps5 downstream target and demonstrate that exogenous Klf15 is able to rescue the overt defects and re-balance the cardiac metabolome. We further show that Mrps5 represses Klf15 expression through c-myc, together with the metabolite L-phenylalanine. This critical role for Mrps5 in cardiac metabolism and mitonuclear communication highlights its potential as a target for heart failure therapies.
    DOI:  https://doi.org/10.1038/s41467-023-37291-5