bims-tricox Biomed News
on Translation, ribosomes and COX
Issue of 2022–10–23
seven papers selected by
Yash Verma, University of Delhi South Campus



  1. RNA Biol. 2022 Jan;19(1): 1103-1114
      The ribosome has long been thought to be a homogeneous cellular machine that constitutively and globally synthesises proteins from mRNA. However, recent studies have revealed that ribosomes are highly heterogeneous, dynamic macromolecular complexes with specialised roles in translational regulation in many organisms across the kingdoms. In this review, we summarise the current understanding of ribosome heterogeneity and the specialised functions of heterogeneous ribosomes. We also discuss specialised translation systems that utilise orthogonal ribosomes.
    Keywords:  Specialised ribosome; divergent rRNA; orthogonal ribosome; post-translational modification; ribosomal protein; ribosome heterogeneity
    DOI:  https://doi.org/10.1080/15476286.2022.2135299
  2. Nat Commun. 2022 Oct 17. 13(1): 6132
      Mitoribosomes of green algae display a great structural divergence from their tracheophyte relatives, with fragmentation of both rRNA and proteins as a defining feature. Here, we report a 2.9 Å resolution structure of the mitoribosome from the alga Polytomella magna harbouring a reduced rRNA split into 13 fragments. We found that the rRNA contains a non-canonical reduced form of the 5S, as well as a permutation of the LSU domain I. The mt-5S rRNA is stabilised by mL40 that is also found in mitoribosomes lacking the 5S, which suggests an evolutionary pathway. Through comparison to other ribosomes with fragmented rRNAs, we observe that the pattern is shared across large evolutionary distances, and between cellular compartments, indicating an evolutionary convergence and supporting the concept of a primordial fragmented ribosome. On the protein level, eleven peripherally associated HEAT-repeat proteins are involved in the binding of 3' rRNA termini, and the structure features a prominent pseudo-trimer of one of them (mL116). Finally, in the exit tunnel, mL128 constricts the tunnel width of the vestibular area, and mL105, a homolog of a membrane targeting component mediates contacts with an inner membrane bound insertase. Together, the structural analysis provides insight into the evolution of the ribosomal machinery in mitochondria.
    DOI:  https://doi.org/10.1038/s41467-022-33582-5
  3. Wiley Interdiscip Rev RNA. 2022 Oct 18. e1766
      Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
    Keywords:  RNA exosome; RNA processing; ribonuclease; ribosome biogenesis
    DOI:  https://doi.org/10.1002/wrna.1766
  4. Nucleic Acids Res. 2022 Oct 20. pii: gkac910. [Epub ahead of print]
      The transition of the 90S to the pre-40S pre-ribosome is a decisive step in eukaryotic small subunit biogenesis leading to a first pre-40S intermediate (state Dis-C or primordial pre-40S), where the U3 snoRNA keeps the nascent 18S rRNA locally immature. We in vitro reconstitute the ATP-dependent U3 release from this particle, catalyzed by the helicase Dhr1, and follow this process by cryo-EM revealing two successive pre-40S intermediates, Dis-D and Dis-E. The latter has lost not only U3 but all residual 90S factors including the GTPase Bms1. In vitro remodeling likewise induced the formation of the central pseudoknot, a universally conserved tertiary RNA structure that comprises the core of the small subunit decoding center. Thus, we could structurally reveal a key tertiary RNA folding step that is essential to form the active 40S subunit.
    DOI:  https://doi.org/10.1093/nar/gkac910
  5. Life Sci Alliance. 2023 Jan;pii: e202201526. [Epub ahead of print]6(1):
      Mitochondria play a key role in cellular energy metabolism. Transitions between glycolytic and respiratory conditions induce considerable adaptations of the cellular proteome. These metabolism-dependent changes are particularly pronounced for the protein composition of mitochondria. Here, we show that the yeast cytosolic ubiquitin conjugase Ubc8 plays a crucial role in the remodeling process when cells transition from respiratory to fermentative conditions. Ubc8 is a conserved and well-studied component of the catabolite control system that is known to regulate the stability of gluconeogenic enzymes. Unexpectedly, we found that Ubc8 also promotes the assembly of the translocase of the outer membrane of mitochondria (TOM) and increases the levels of its cytosol-exposed receptor subunit Tom22. Ubc8 deficiency results in compromised protein import into mitochondria and reduced steady-state levels of mitochondrial proteins. Our observations show that Ubc8, which is controlled by the prevailing metabolic conditions, promotes the switch from glucose synthesis to glucose usage in the cytosol and induces the biogenesis of the mitochondrial TOM machinery to improve mitochondrial protein import during phases of metabolic transition.
    DOI:  https://doi.org/10.26508/lsa.202201526
  6. Evol Ecol. 2022 Oct;36(5): 753-766
      All adaptive alleles in existence today began as mutations, but a common view in ecology, evolution, and genetics is that non-neutral mutations are much more likely to be deleterious than beneficial and will be removed by purifying selection. By dramatically limiting the effectiveness of selection in experimental mutation accumulation lines, multiple studies have shown that new mutations cause a detectable reduction in mean fitness. However, a number of exceptions to this pattern have now been observed in multiple species, including in highly replicated, intensive analyses. We briefly review these cases and discuss possible explanations for the inconsistent fitness outcomes of mutation accumulation experiments. We propose that variation in the outcomes of these studies is of interest and understanding the underlying causes of these diverse results will help shed light on fundamental questions about the evolutionary role of mutations.
    Keywords:  Distribution of fitness effects; beneficial mutations; fitness landscape; life history traits
    DOI:  https://doi.org/10.1007/s10682-022-10187-4