bims-tremyl Biomed News
on Therapy resistance biology in myeloid leukemia
Issue of 2024–09–08
28 papers selected by
Paolo Gallipoli, Barts Cancer Institute, Queen Mary University of London



  1. Am J Hematol. 2024 Aug 31.
      The best donor option for acute myeloid leukemia (AML) patients lacking an HLA-matched donor has remained intensively debated. We herein report the results of a large retrospective registry study comparing hematopoietic cell transplantation (HCT) outcomes between double-unit umbilical cord blood transplantation (dCBT, n = 209) versus 9/10 HLA-matched unrelated donor (UD) with posttransplant cyclophosphamide (PTCy)-based graft-versus-host disease (GVHD) prophylaxis (UD 9/10, n = 270) in patients with AML in first complete remission (CR1). Inclusion criteria consisted of adult patient, AML in CR1 at transplantation, either peripheral blood stem cells (PBSC) from UD 9/10 with PTCy as GVHD prophylaxis or dCBT without PTCy, transplantation between 2013 and 2021, and no in vivo T-cell depletion. The 180-day cumulative incidence of grade II-IV acute GVHD was 29% in UD 9/10 versus 44% in dCBT recipients (p = .001). After adjustment for covariates, dCBT recipients had a higher non-relapse mortality (HR = 2.35, 95% CI: 1.23-4.48; p = .01), comparable relapse incidence (HR = 1.12, 95% CI: 0.67-1.86; p = .66), lower leukemia-free survival (HR = 1.5, 95% CI: 1.01-2.23; p = .047), and lower overall survival (HR = 1.66, 95% CI: 1.08-2.55; p = .02) compared with patients receiving UD 9/10 HCT. In summary, our results suggest that transplantation outcomes are better with UD 9/10 with PTCy-based GVHD prophylaxis than with dCBT for AML patients in CR1. These data might support the use of UD 9/10 with PTCy-based GVHD prophylaxis over dCBT in AML patients lacking an HLA-matched donor.
    DOI:  https://doi.org/10.1002/ajh.27466
  2. Blood. 2024 Sep 05. pii: blood.2024024245. [Epub ahead of print]
      Despite advances in the treatment paradigm of patients with acute myeloid leukemia (AML), TP53 mutated AML represents a molecular subgroup that has failed to improve with an overall survival around 6 months that is independent of age and fitness. Notably, there has been significant elucidation in understanding the biology of the disease and key advancements in the classification and prognostication of these patients. International collaborative efforts of novel clinical interventions are urgently needed to change the standard of care.
    DOI:  https://doi.org/10.1182/blood.2024024245
  3. bioRxiv. 2024 Aug 07. pii: 2024.08.05.599788. [Epub ahead of print]
      Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that continues to have poor prognosis despite recent therapeutic advances. Venetoclax (Ven), a BCL2-inhibitor has shown a high response rate in AML; however, relapse is invariable due to mitochondrial dysregulation that includes upregulation of the antiapoptotic protein MCL1, a central mechanism of Ven resistance (Ven-res). We have previously demonstrated that the transcription factor STAT3 is upregulated in AML hematopoietic stem and progenitor cells (HSPCs) and can be effectively targeted to induce apoptosis of these aberrant cells. We now show that overexpression of STAT3 alone is sufficient to initiate a strong AML phenotype in a transgenic murine model. Phospho-proteomic data from Ven treated AML patients show a strong correlation of high total STAT3 and phospho-STAT3 [both p-STAT3(Y705) and p-STAT3(S727)] expression with worse survival and reduced remission duration. Additionally, significant upregulation of STAT3 was observed in Ven-res cell lines, in vivo models and primary patient samples. A novel and specific degrader of STAT3 demonstrated targeted reduction of total STAT3 and resulting inhibition of its active p-STAT3(Y705) and p-STAT3(S727) forms. Treatment with the STAT3 degrader induced apoptosis in parental and Ven-res AML cell lines and decreased mitochondrial depolarisation, and thereby dependency on MCL1 in Ven-res AML cell line, as observed by BH3 profiling assay. STAT3 degrader treatment also enhanced differentiation of myeloid and erythroid colonies in Ven-res peripheral blood mononuclear cells (PBMNCs). Upregulation of p-STAT3(S727) was also associated with pronounced mitochondrial structural and functional dysfunction in Ven-res cell lines, that were restored by STAT3 degradation. Treatment with a clinical-stage STAT3 degrader, KT-333 resulted in a significant reduction in STAT3 and MCL1 protein levels within two weeks of treatment in a cell derived xenograft model of Ven-res AML. Additionally, this treatment significant improvement in the survival of a Ven-res patient-derived xenograft in-vivo study. Degradation of STAT3 resulting in downregulation of MCL1 and improvements in global mitochondrial dysfunction suggests a novel mechanism of overcoming Ven-res in AML.
    Statement of Purpose: Five-year survival from AML is dismal at 30%. Our prior research demonstrated STAT3 over-expression in AML HSPC's to be associated with inferior survival. We now explore STAT3 over-expression in Ven-res AML, explain STAT3 mediated mitochondrial perturbations and describe a novel therapeutic strategy, STAT3 degradation to overcome Ven-res.
    DOI:  https://doi.org/10.1101/2024.08.05.599788
  4. J Clin Oncol. 2024 Sep 04. JCO2302631
       PURPOSE: AML is a genetically heterogeneous disease, particularly in older patients. In patients older than 60 years, survival rates are variable after the most important curative approach, intensive chemotherapy followed by allogeneic hematopoietic cell transplantation (allo-HCT). Thus, there is an urgent need in clinical practice for a prognostic model to identify older patients with AML who benefit from curative treatment.
    METHODS: We studied 1,910 intensively treated patients older than 60 years with AML and high-risk myelodysplastic syndrome (HR-MDS) from two cohorts (NCRI-AML18 and HOVON-SAKK). The median patient age was 67 years. Using a random survival forest, clinical, molecular, and cytogenetic variables were evaluated in an AML development cohort (n = 1,204) for association with overall survival (OS). Relative weights of selected variables determined the prognostic model, which was validated in AML (n = 491) and HR-MDS cohorts (n = 215).
    RESULTS: The complete cohort had a high frequency of poor-risk features, including 2022 European LeukemiaNet adverse-risk (57.3%), mutated TP53 (14.4%), and myelodysplasia-related genetic features (65.1%). Nine variables were used to construct four groups with highly distinct 4-year OS in the (1) AML development, (2) AML validation, and (3) HR-MDS test cohorts ([1] favorable: 54% ± 4%, intermediate: 38% ± 2%, poor: 21% ± 2%, very poor: 4% ± 1%; [2] 54% ± 9%, 43% ± 4%, 27% ± 4%, 4% ± 3%; and [3] 54% ± 10%, 33% ± 6%, 14% ± 5%, 0% ± 3%, respectively). This new AML60+ classification improves current prognostic classifications. Importantly, patients within the AML60+ intermediate- and very poor-risk group significantly benefited from allo-HCT, whereas the poor-risk patients showed an indication, albeit nonsignificant, for improved outcome after allo-HCT.
    CONCLUSION: The new AML60+ classification provides prognostic information for intensively treated patients 60 years and older with AML and HR-MDS and identifies patients who benefit from intensive chemotherapy and allo-HCT.
    DOI:  https://doi.org/10.1200/JCO.23.02631
  5. Leukemia. 2024 Sep 05.
      The phase 3 COMMODORE trial evaluated gilteritinib versus salvage chemotherapy (SC) in a predominantly Asian relapsed/refractory (R/R) FLT3-mutated (FLT3mut+) acute myeloid leukemia (AML) patient population. The primary endpoint was overall survival (OS); secondary endpoints included event-free survival (EFS) and complete remission (CR) rate. As of June 30, 2020 (interim analysis: 32.2 months after study initiation), 234 patients were randomized (gilteritinib, n = 116; SC, n = 118). Median OS was significantly longer with gilteritinib versus SC (9.6 vs. 5.0 months; HR 0.566 [95% CI: 0.392, 0.818]; p = 0.00211) with a median follow-up of 10.3 months. Median EFS was also significantly longer with gilteritinib (2.8 vs. 0.6 months; HR 0.551 [95% CI: 0.395, 0.769]; p = 0.00004). CR rates with gilteritinib and SC were 16.4% and 10.2%, respectively; composite CR rates were 50.0% and 20.3%, respectively. Exposure-adjusted grade ≥3 adverse event (AE) rates were lower with gilteritinib (58.38 events/patient-year [E/PY]) versus SC (168.30 E/PY). Common AEs with gilteritinib were anemia (77.9%) and thrombocytopenia (45.1%). Gilteritinib plasma concentration peaked ~4 h postdose; ~3-fold accumulation occurred with multiple dosing. The COMMODORE trial demonstrated that gilteritinib significantly improved OS and EFS in predominantly Asian patients, validating the outcomes of gilteritinib from the ADMIRAL trial in R/R FLT3mut+ AML.
    DOI:  https://doi.org/10.1038/s41375-024-02382-9
  6. Blood. 2024 Sep 06. pii: blood.2024024247. [Epub ahead of print]
      The advent of reduced-intensity conditioning regimens, improvements in graft-versus-host disease prophylaxis, and better supportive care have permitted increasing use of allogeneic hematopoietic cell transplantation (allo-HCT) in adults age ≥70 with AML. However, while potentially curative, non-relapse mortality and relapse represent the main causes of treatment failure, highlighting the importance of refining both patient selection and transplant strategies. At the same time, continuously evolving non-transplant therapies and transplant technologies mandate prospective trials (re-)examining the role of allo-HCT and its optimal delivery.
    DOI:  https://doi.org/10.1182/blood.2024024247
  7. Nat Med. 2024 Aug 30.
      Clonal hematopoiesis, a condition in which acquired somatic mutations in hematopoietic stem cells lead to the outgrowth of a mutant hematopoietic clone, is associated with a higher risk of hematological cancer and a growing list of nonhematological disorders, most notably atherosclerosis and associated cardiovascular disease. However, whether accelerated atherosclerosis is a cause or a consequence of clonal hematopoiesis remains a matter of debate. Some studies support a direct contribution of certain clonal hematopoiesis-related mutations to atherosclerosis via exacerbation of inflammatory responses, whereas others suggest that clonal hematopoiesis is a symptom rather than a cause of atherosclerosis, as atherosclerosis or related traits may accelerate the expansion of mutant hematopoietic clones. Here we combine high-sensitivity DNA sequencing in blood and noninvasive vascular imaging to investigate the interplay between clonal hematopoiesis and atherosclerosis in a longitudinal cohort of healthy middle-aged individuals. We found that the presence of a clonal hematopoiesis-related mutation confers an increased risk of developing de novo femoral atherosclerosis over a 6-year period, whereas neither the presence nor the extent of atherosclerosis affects mutant cell expansion during this timeframe. These findings indicate that clonal hematopoiesis unidirectionally promotes atherosclerosis, which should help translate the growing understanding of this condition into strategies for the prevention of atherosclerotic cardiovascular disease in individuals exhibiting clonal hematopoiesis.
    DOI:  https://doi.org/10.1038/s41591-024-03213-1
  8. Cancer Discov. 2024 Sep 04. 14(9): 1581-1583
      There is no general consensus on the set of mutations capable of driving the age-related clonal expansions in hematopoietic stem cells known as clonal hematopoiesis, and current variant classifications typically rely on rules derived from expert knowledge. In this issue of Cancer Discovery, Damajo and colleagues trained and validated machine learning models without prior knowledge of clonal hematopoiesis driver mutations to classify somatic mutations in blood for 12 genes in a purely data-driven way. See related article by Demajo et al., p. 1717 (9).
    DOI:  https://doi.org/10.1158/2159-8290.CD-24-0751
  9. Cancer Cell. 2024 Aug 23. pii: S1535-6108(24)00298-8. [Epub ahead of print]
      BCR-ABL1 compound mutations can lead to resistance to ABL1 inhibitors in chronic myeloid leukemia (CML), which could be targeted by combining the ATP-site inhibitor ponatinib and the allosteric inhibitor asciminib. Here, we report the clinical validation of this approach in a CML patient, providing a basis for combination therapy to overcome such resistance.
    DOI:  https://doi.org/10.1016/j.ccell.2024.08.004
  10. Aging Cell. 2024 Sep 05. e14324
      Aged hematopoietic stem cells (HSCs) show reduced reconstitution potential, limiting their use in transplantation settings in the clinic. We demonstrate here that exposure of aged HSCs ex vivo to a pH of 6.9 instead of the commonly used pH of 7.4 results in enhanced HSCs potential that is consistent with rejuvenation, including attenuation of the myeloid bias of aged HSC and restoration of a youthful frequency of epigenetic polarity. Rejuvenation of aged HSCs by pH 6.9 is, at least in part, due to alterations in the polyamine/methionine pathway within pH 6.9 HSCs, and consequently, attenuation of the production of spermidine also attenuated aging of HSCs. Exposure of aged HSCs to pH 6.9, or pharmacological targeting of the polyamine pathway, might thus extend the use of HSCs from aged donors for therapeutic applications.
    Keywords:  aging; hematopoietic stem cells; pH; polyamine; rejuvenation
    DOI:  https://doi.org/10.1111/acel.14324
  11. Leukemia. 2024 Sep 02.
      Leukemia, although most likely starts as a monoclonal genetic/epigenetic anomaly, is a polyclonal disease at manifestation. This polyclonal nature results from ongoing evolutionary changes in the genome/epigenome of leukemia cells to promote their survival and proliferation advantages. We discuss here how genetic and/or epigenetic aberrations alter intracellular microenvironment in individual leukemia clones and how extracellular microenvironment selects the best fitted clones. This dynamic polyclonal composition of leukemia makes designing an effective therapy a challenging task especially because individual leukemia clones often display substantial differences in response to treatment. Here, we discuss novel therapeutic approach employing single cell multiomics to identify and eradicate all individual clones in a patient.
    DOI:  https://doi.org/10.1038/s41375-024-02369-6
  12. Blood Cancer Discov. 2024 Sep 05.
      Combined tracking of clonal evolution and chimeric cell phenotypes could enable detection of the key cellular populations associated with response following therapy, including after allogeneic hematopoietic stem cell transplantation (HSCT). We demonstrate that mitochondrial DNA (mtDNA) mutations co-evolve with somatic nuclear DNA mutations at relapse post-HSCT and provide a sensitive means to monitor these cellular populations. Further, detection of mtDNA mutations via single-cell ATAC with select antigen profiling by sequencing (ASAP-seq) simultaneously determines not only donor and recipient cells, but also their phenotype, at frequencies of 0.1-1%. Finally, integration of mtDNA mutations, surface markers, and chromatin accessibility profiles enables the phenotypic resolution of leukemic populations from normal immune cells, thereby providing fresh insights into residual donor-derived engraftment and short-term clonal evolution following therapy for post-transplant leukemia relapse. As throughput evolves, we envision future development of single-cell sequencing-based post-transplant monitoring as a powerful approach for guiding clinical decision making.
    DOI:  https://doi.org/10.1158/2643-3230.BCD-23-0138
  13. bioRxiv. 2024 Aug 19. pii: 2024.08.16.607812. [Epub ahead of print]
      Somatic mutations arising in hematopoietic stem cells (HSCs) may provide the latter with a fitness advantage, allowing the mutant HSC to clonally expand. Such mutations have been recurrently identified in the chromatin modifier, SRCAP , in both non-malignant and leukemic clones, suggesting that this gene plays a significant role in hematopoiesis. We generated a conditional Srcap loss of function murine model and determined the consequences of hematopoietic-specific loss of this gene. We show that Srcap is essential for normal fetal liver erythropoiesis and monocytopoiesis. In Srcap deficient fetal livers, the number of phenotypic HSCs is similar to that of controls, but these HSCs exhibit a profound repopulating defect. Likewise, conditional deletion of Srcap during adult hematopoiesis results in a rapid loss of HSCs. Loss of Srcap is associated with evidence of increased DNA damage in HSCs and lineage-restricted progenitors as assessed by y-H2AX expression. Consistent with this finding, we observed strong transcriptional upregulation of the p53 pathway in Srcap deficient erythroid precursors. Collectively our data highlight the importance of Srcap in maintaining HSC function and supporting hematopoietic differentiation and suggests that it plays an essential role in maintaining genomic integrity.
    Key Points: Srcap plays an essential role in supporting normal hematopoietic differentiation. and in maintaining HSC function. Loss of Srcap is associated with evidence of increased DNA damage and transcriptional upregulation of the p53 pathway.
    DOI:  https://doi.org/10.1101/2024.08.16.607812
  14. Leuk Res. 2024 Aug 25. pii: S0145-2126(24)00131-0. [Epub ahead of print]145 107565
       INTRODUCTION: Allogeneic Hematopoietic cell transplantation (allo-HCT) remains the only curative therapy for myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML). The impact of spliceosome mutations on allo-HCT outcome is unclear and further understanding is needed to assess the implications of this class of mutations on risk of relapse, overall survival (OS) and non-relapse mortality (NRM) in order to make decision regarding timing of allo-HCT. We examined the allo-HCT outcomes of MDS/CMML patients based on their spliceosome mutation profile to understand the impact of these mutations on transplant outcomes.
    OBJECTIVE: To compare outcomes of MDS/CMML patients with and without spliceosome mutations undergoing allo-HCT.
    METHODS: This is a single institution, retrospective study of MDS/CMML patients who underwent allo-HCT with myeloablative or reduced intensity conditioning (RIC) regimen at City of Hope from January 2016 to December 2021. Among them, patients who underwent molecular mutation profiling by NGS (Next Generation Sequencing) for a set of genes known to be mutated in myeloid neoplasms are included in this analysis. We compared OS, relapse free survival, NRM and acute/chronic graft versus host disease (GVHD) incidence between the spliceosome-mutated and unmutated groups.
    RESULTS: We identified 258 consecutive MDS/CMML patients who underwent allo-HCT. Of these, 126 (48.8 %) patients had molecular profiling done among whom 57 (45.2 %) patients carried a spliceosome mutation. 84.9 % of patients had MDS and 55.6 % underwent a matched unrelated donor transplant. The median age for the whole cohort was 66 years (range 12-77).78.6 % and 73.7 % received RIC in the spliceosome and non-spliceosome groups, respectively. The 2-year OS for the whole cohort was 66.5 % (95 %CI 0.55-0.75) with a day 100 NRM of 7.1 % and 2-year cumulative incidence of relapse of 20 %. Grade II-IV acute GVHD at day 100 was 36.3 % (95 % CI 0.27-0.44) and any chronic GVHD at 2-years was 48.4 % (95 % CI 0.37-0.58). Patients who carried a spliceosome mutation had a significantly better 2-year survival of 83.8 % vs 55.9 % in the non-spliceosome group (P=0.002) and a better PFS of 73.7 % vs 50.0 % (P=0.007). There was no difference in the cumulative incidence of relapse at 2-years 15.9 % vs 18.5 % (P=0.59) between two groups but the spliceosome group had a significantly lower NRM at 2-years 10.4 % vs 31.5 % (P=0.009). There was no difference in incidence of acute or chronic GVHD between the two groups.
    CONCLUSIONS: Among patients with MDS or CMML who underwent allo-HCT, our study shows better OS for patients who have spliceosome mutations due to lower NRM compared to those carrying non- spliceosome mutations. This favorable outcome of the spliceosome-mutated patients could have implications for timing of allo-HCT, particularly for patients in the intermediate MDS prognostic risk groups.
    Keywords:  Allogeneic; Chronic myelomonocytiic leukemia; Hematopoietic cell transplantation; Myelodysplastic syndrome; Outcome; Spliceosome mutation
    DOI:  https://doi.org/10.1016/j.leukres.2024.107565
  15. medRxiv. 2024 Aug 26. pii: 2024.08.22.24312319. [Epub ahead of print]
      Clonal hematopoiesis (CH) is defined by the expansion of a lineage of genetically identical cells in blood. Genetic lesions that confer a fitness advantage, such as point mutations or mosaic chromosomal alterations (mCAs) in genes associated with hematologic malignancy, are frequent mediators of CH. However, recent analyses of both single cell-derived colonies of hematopoietic cells and population sequencing cohorts have revealed CH frequently occurs in the absence of known driver genetic lesions. To characterize CH without known driver genetic lesions, we used 51,399 deeply sequenced whole genomes from the NHLBI TOPMed sequencing initiative to perform simultaneous germline and somatic mutation analyses among individuals without leukemogenic point mutations (LPM), which we term CH-LPMneg. We quantified CH by estimating the total mutation burden. Because estimating somatic mutation burden without a paired-tissue sample is challenging, we developed a novel statistical method, the Genomic and Epigenomic informed Mutation (GEM) rate, that uses external genomic and epigenomic data sources to distinguish artifactual signals from true somatic mutations. We performed a genome-wide association study of GEM to discover the germline determinants of CH-LPMneg. After fine-mapping and variant-to-gene analyses, we identified seven genes associated with CH-LPMneg ( TCL1A, TERT, SMC4, NRIP1, PRDM16 , MSRA , SCARB1 ), and one locus associated with a sex-associated mutation pathway ( SRGAP2C) . We performed a secondary analysis excluding individuals with mCAs, finding that the genetic architecture was largely unaffected by their inclusion. Functional analyses of SMC4 and NRIP1 implicated altered HSC self-renewal and proliferation as the primary mediator of mutation burden in blood. We then performed comprehensive multi-tissue transcriptomic analyses, finding that the expression levels of 404 genes are associated with GEM. Finally, we performed phenotypic association meta-analyses across four cohorts, finding that GEM is associated with increased white blood cell count and increased risk for incident peripheral artery disease, but is not significantly associated with incident stroke or coronary disease events. Overall, we develop GEM for quantifying mutation burden from WGS without a paired-tissue sample and use GEM to discover the genetic, genomic, and phenotypic correlates of CH-LPMneg.
    DOI:  https://doi.org/10.1101/2024.08.22.24312319
  16. Blood Rev. 2024 Aug 29. pii: S0268-960X(24)00071-7. [Epub ahead of print] 101238
      Older/unfit adults with AML have worse outcomes and fewer treatment options than their younger/fit counterparts. In vitro studies have found a synergistic effect of hypomethylating agents (HMA) with venetoclax (VEN) on AML cells and since the phase 3 VIALE-A trial demonstrated a survival benefit, HMA + VEN has become the standard of care in the frontline setting for older/unfit adults with AML. Unfortunately, the standard 28-day cycle of VEN is associated with a high degree of myelosuppression leading to treatment delays and dose modifications. Many small retrospective studies have successfully shown comparable outcomes to VIALE-A with reduced dose/duration of VEN. Furthermore, low dose metronomic dosing of HMA + VEN has shown clinical benefit while minimizing myelotoxicity. Future trials are vital to understand the appropriate dose of VEN in combination with HMA, to evaluate HMA + VEN compared to intensive therapy for younger/fit patients, and to explore its utility in the relapsed/refractory setting.
    Keywords:  AML; Dosing; Reduction; Toxicity; Venetoclax
    DOI:  https://doi.org/10.1016/j.blre.2024.101238
  17. Cancer Discov. 2024 Sep 04. 14(9): 1574-1576
      Juvenile myelomonocytic leukemia (JMML) is a rare pediatric hematologic malignancy with a high relapse rate and a poor prognosis hallmarked by RAS pathway mutations. Stieglitz and colleagues conducted a phase II clinical trial using the MEK inhibitor trametinib to treat patients with relapsed and refractory juvenile myelomonocytic leukemia and observed an objective response rate of 50% and an overall survival of 80% after 4 years. See related article by Stieglitz et al., p. 1590 (4) .
    DOI:  https://doi.org/10.1158/2159-8290.CD-24-0752
  18. Nat Commun. 2024 Aug 31. 15(1): 7589
      The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes. High-resolution microscopy and photoconversion tracing experiments uncover hematopoietic cells, mainly hematopoietic stem and progenitor cells (HSPCs)/megakaryocyte-erythroid precursors (MEPs), derived from EdCs as well as the dorsal aorta stably attached to the endocardium. Emergence of HSPCs/MEPs in hearts cultured ex vivo without external hematopoietic sources, as well as longitudinal imaging of the beating heart using light sheet microscopy, support endocardial contribution to hematopoiesis. Maintenance of these hematopoietic cells depends on the adhesion factors Integrin α4 and Vcam1 but is at least partly independent of cardiac trabeculation or shear stress. Finally, blocking primitive erythropoiesis increases cardiac-residing hematopoietic cells, suggesting that the endocardium is a hematopoietic reservoir. Altogether, these studies uncover the endocardium as a resident tissue for HSPCs/MEPs and a de novo source of hematopoietic cells.
    DOI:  https://doi.org/10.1038/s41467-024-51920-7
  19. Elife. 2024 Sep 05. pii: RP97096. [Epub ahead of print]13
      Mutational profiles of myelodysplastic syndromes (MDS) have established that a relatively small number of genetic aberrations, including SF3B1 and SRSF2 spliceosome mutations, lead to specific phenotypes and prognostic subgrouping. We performed a multi-omics factor analysis (MOFA) on two published MDS cohorts of bone marrow mononuclear cells (BMMNCs) and CD34 + cells with three data modalities (clinical, genotype, and transcriptomics). Seven different views, including immune profile, inflammation/aging, retrotransposon (RTE) expression, and cell-type composition, were derived from these modalities to identify the latent factors with significant impact on MDS prognosis. SF3B1 was the only mutation among 13 mutations in the BMMNC cohort, indicating a significant association with high inflammation. This trend was also observed to a lesser extent in the CD34 + cohort. Interestingly, the MOFA factor representing the inflammation shows a good prognosis for MDS patients with high inflammation. In contrast, SRSF2 mutant cases show a granulocyte-monocyte progenitor (GMP) pattern and high levels of senescence, immunosenescence, and malignant myeloid cells, consistent with their poor prognosis. Furthermore, MOFA identified RTE expression as a risk factor for MDS. This work elucidates the efficacy of our integrative approach to assess the MDS risk that goes beyond all the scoring systems described thus far for MDS.
    Keywords:  cancer biology; human; inflammation; integrative analysis; multi-omics; myelodysplastic syndromes; risk factors; transposable elements
    DOI:  https://doi.org/10.7554/eLife.97096
  20. Leuk Res Rep. 2024 ;22 100477
      Acute myeloid leukemia (AML) patients undergoing induction chemotherapy receive transfusion support to manage severe cytopenias and associated sequelae. Jehovah's Witness (JW) patients typically decline transfusion of most or all blood products. This can lead to exclusion of JW patients from otherwise life-saving treatments due to safety concerns. We present two cases demonstrating the successful induction of JW patients without the need for red cell or platelet transfusion support; the first, an older AML patient induced with azacitidine & venetoclax; the second, a patient with acute promyelocytic leukemia induced using arsenic trioxide and all-trans retinoic acid. Both patients required modifications to the induction regimens to accommodate their wishes. These cases support growing evidence that selected JW patients with AML can be successfully treated using appropriate accommodations.
    Keywords:  AML; Chemotherapy; Jehovah's Witness; Leukemia; Treatment
    DOI:  https://doi.org/10.1016/j.lrr.2024.100477
  21. Science. 2024 Sep 05. eadn0327
      Age is a major risk factor for cancer, but how aging impacts tumor control remains unclear. Here, we establish that aging of the immune system, regardless of the age of the stroma and tumor, drives lung cancer progression. Hematopoietic aging enhances emergency myelopoiesis, resulting in the local accumulation of myeloid progenitor-like cells in lung tumors. These cells are a major source of IL-1⍺ that drives the enhanced myeloid response. The age-associated decline of DNMT3A enhances IL-1⍺ production, and disrupting IL-1R1 signaling early during tumor development normalized myelopoiesis and slowed the growth of lung, colonic, and pancreatic tumors. In human tumors, we identified an enrichment for IL-1⍺-expressing monocyte-derived macrophages linked to age, poorer survival, and recurrence, unraveling how aging promotes cancer and offering actionable therapeutic strategies.
    DOI:  https://doi.org/10.1126/science.adn0327
  22. Science. 2024 Sep 06. 385(6713): eadk9217
    Cancer Genome Atlas Analysis Network‡
      To identify cancer-associated gene regulatory changes, we generated single-cell chromatin accessibility landscapes across eight tumor types as part of The Cancer Genome Atlas. Tumor chromatin accessibility is strongly influenced by copy number alterations that can be used to identify subclones, yet underlying cis-regulatory landscapes retain cancer type-specific features. Using organ-matched healthy tissues, we identified the "nearest healthy" cell types in diverse cancers, demonstrating that the chromatin signature of basal-like-subtype breast cancer is most similar to secretory-type luminal epithelial cells. Neural network models trained to learn regulatory programs in cancer revealed enrichment of model-prioritized somatic noncoding mutations near cancer-associated genes, suggesting that dispersed, nonrecurrent, noncoding mutations in cancer are functional. Overall, these data and interpretable gene regulatory models for cancer and healthy tissue provide a framework for understanding cancer-specific gene regulation.
    DOI:  https://doi.org/10.1126/science.adk9217
  23. Nat Biotechnol. 2024 Sep 02.
      Hematopoietic stem cells (HSCs) derived from human induced pluripotent stem cells (iPS cells) have important biomedical applications. We identified differentiation conditions that generate HSCs defined by robust long-term multilineage engraftment in immune-deficient NOD,B6.Prkdcscid Il2rgtm1Wjl/SzJ KitW41/W41 mice. We guided differentiating iPS cells, as embryoid bodies in a defined culture medium supplemented with retinyl acetate, through HOXA-patterned mesoderm to hemogenic endothelium specified by bone morphogenetic protein 4 and vascular endothelial growth factor (VEGF). Removal of VEGF facilitated an efficient endothelial-to-hematopoietic transition, evidenced by release into the culture medium of CD34+ blood cells, which were cryopreserved. Intravenous transplantation of two million thawed CD34+ cells differentiated from four independent iPS cell lines produced multilineage bone marrow engraftment in 25-50% of immune-deficient recipient mice. These functionally defined, multipotent CD34+ hematopoietic cells, designated iPS cell-derived HSCs (iHSCs), produced levels of engraftment similar to those achieved following umbilical cord blood transplantation. Our study provides a step toward the goal of generating HSCs for clinical translation.
    DOI:  https://doi.org/10.1038/s41587-024-02360-7