bims-tremyl Biomed News
on Therapy resistance biology in myeloid leukemia
Issue of 2021‒05‒16
thirty-one papers selected by
Paolo Gallipoli
Barts Cancer Institute, Queen Mary University of London


  1. Nat Commun. 2021 May 10. 12(1): 2607
      Allosteric inhibitors of mutant IDH1 or IDH2 induce terminal differentiation of the mutant leukemic blasts and provide durable clinical responses in approximately 40% of acute myeloid leukemia (AML) patients with the mutations. However, primary resistance and acquired resistance to the drugs are major clinical issues. To understand the molecular underpinnings of clinical resistance to IDH inhibitors (IDHi), we perform multipronged genomic analyses (DNA sequencing, RNA sequencing and cytosine methylation profiling) in longitudinally collected specimens from 60 IDH1- or IDH2-mutant AML patients treated with the inhibitors. The analysis reveals that leukemia stemness is a major driver of primary resistance to IDHi, whereas selection of mutations in RUNX1/CEBPA or RAS-RTK pathway genes is the main driver of acquired resistance to IDHi, along with BCOR, homologous IDH gene, and TET2. These data suggest that targeting stemness and certain high-risk co-occurring mutations may overcome resistance to IDHi in AML.
    DOI:  https://doi.org/10.1038/s41467-021-22874-x
  2. Clin Cancer Res. 2021 May 13. pii: clincanres.0164.2021. [Epub ahead of print]
      PURPOSE: Natural killer (NK) cell recognition and function against NK-resistant cancers remains substantial barriers to the broad application of NK cell immunotherapy. Potential solutions include bispecific engagers that target NK cell activity via an NK activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL-12/15/18 cytokine pre-activation.EXPERIMENTAL DESIGN: We assessed single-cell NK cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL-12/15/18 pre-activation of blood and cord-blood-derived NK cells was investigated in vitro and in vivo.
    RESULTS: We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from Hodgkin lymphoma patients. IL-12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared to cNK cells. Cord-blood NK cells pre-activated with IL-12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo.
    CONCLUSIONS: We identify AFM13 as a promising combination with cytokine-activated adult blood or cord blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-21-0164
  3. J Cell Physiol. 2021 May 13.
      Daunorubicin (DNR) is used clinically to treat acute myeloid leukemia (AML), while the signaling pathways associated with its cytotoxicity are not fully elucidated. Thus, we investigated the DNR-induced death pathway in the human AML cell lines U937 and HL-60. DNR-induced apoptosis in U937 cells accompanied by downregulation of MCL1 and BCL2L1, upregulation of Phorbol-12-myristate-13-acetate-induced protein 1 (NOXA), and mitochondrial depolarization. DNR induced NOX4-mediated reactive reactive oxygen species (ROS) production, which in turn inactivated Akt and simultaneously activated p38 mitogen-activated protein kinase (MAPK). Activated p38 MAPK and inactivated Akt coordinately increased GSK3β-mediated cAMP response element-binding protein (CREB) phosphorylation, which promoted NOXA transcription. NOXA upregulation critically increased the proteasomal degradation of MCL1 and BCL2L1. The same pathway was also responsible for the DNR-induced death of HL-60 cells. Restoration of MCL1 or BCL2L1 expression alleviated DNR-induced mitochondrial depolarization and cell death. Furthermore, ABT-199 (a BCL2 inhibitor) synergistically enhanced the cytotoxicity of DNR in AML cell lines. Notably, DNR-induced DNA damage was not related to NOXA-mediated degradation of MCL1 and BCL2L1. Collectively, these results indicate that the upregulation of NOXA expression through the NOX4-ROS-p38 MAPK-GSK3β-CREB axis results in the degradation of MCL1 and BCL2L1 in DNR-treated U937 and HL-60 cells. This signaling pathway may provide insights into the mechanism underlying DNR-triggered apoptosis in AML cells.
    Keywords:  MCL1 and BCL2L1 downregulation; daunorubicin; leukemia; p38 MAPK-GSK3β-CREB axis: NOXA transcription
    DOI:  https://doi.org/10.1002/jcp.30407
  4. Cancer Cell. 2020 12 14. pii: S1535-6108(20)30603-6. [Epub ahead of print]38(6): 782-784
      Using targeted single-cell DNA sequencing approaches, two articles in Nature and Nature Communications have now firmly established that acute myeloid leukemia is a highly dynamic oligoclonal disease. Clonal evolution during disease progression and therapy occurs in both linear and branched trajectories, with a clear order of mutational events.
    DOI:  https://doi.org/10.1016/j.ccell.2020.11.011
  5. Cancer Discov. 2021 May 12. pii: candisc.1793.2020. [Epub ahead of print]
      In acute myeloid leukemia (AML) with inv(3)(q21;q26) or t(3;3)(q21;q26), a translocated GATA2 enhancer drives oncogenic expression of EVI1. We generated an EVI1-GFP AML model and applied an unbiased CRISPR/Cas9 enhancer scan to uncover sequence motifs essential for EVI1 transcription. Using this approach, we pinpointed a single regulatory element in the translocated GATA2 enhancer that is critically required for aberrant EVI1 expression. This element contained a DNA binding motif for the transcription factor MYB which specifically occupied this site at the translocated allele and was dispensable for GATA2 expression. MYB knockout as well as peptidomimetic blockade of CBP/p300-dependent MYB functions resulted in downregulation of EVI1 but not of GATA2. Targeting MYB or mutating its DNA-binding motif within the GATA2 enhancer resulted in myeloid differentiation and cell death, suggesting that interference with MYB-driven EVI1 transcription provides a potential entry point for therapy of inv(3)/t(3;3) AMLs.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1793
  6. Biomark Res. 2021 May 13. 9(1): 35
      Acute myeloid leukemia (AML) remains an incurable malignancy despite recent advances in treatment. Recently a number of new therapies have emerged for the treatment of AML which target BCL-2 or the membrane receptor CD38. Here, we show that treatment with Venetoclax and Daratumumab combination resulted in a slower tumor progression and a reduced leukemia growth both in vitro and in vivo. These data provide evidence for clinical evaluation of Venetoclax and Daratumumab combination in the treatment of AML.
    DOI:  https://doi.org/10.1186/s40364-021-00291-y
  7. Mol Cell Proteomics. 2021 May 07. pii: S1535-9476(21)00064-5. [Epub ahead of print] 100091
      Non-T cell activation linker (NTAL) membrane protein depletion from lipid rafts by alkylphospholipids or downregulation by shRNA-knockdown decreases cell viability through regulation of the Akt/PI3K pathway in mantle cell lymphoma and acute promyelocytic leukemia cells. Here, we confirmed that the knockdown of NTAL in acute myeloid leukemia (AML) cell lines was associated with decreased cell proliferation and survival. Similarly, a xenograft model using AML cells transduced with NTAL-shRNA and transplanted into NSG immunodeficient mice led to a 1.8-fold decrease in tumor burden. Using immunoprecipitation, LC-MS/MS analysis, and label-free protein quantification, we identified interactors of NTAL in two AML cells lines. By evaluating the gene expression signatures of the NTAL protein interactors using the PRECOG database, we found that 12 NTAL interactors could predict overall survival in AML, in at least two independent cohorts. Additionally, AML patients exhibiting a high expression for of NTAL and its interactors were associated with a leukemic granulocyte-macrophage progenitor (GMP) -like state. Taken together, our data provide evidence that NTAL and its protein interactors are relevant to AML cell proliferation and survival, and represent potential therapeutic targets for GMP-like leukemias.
    Keywords:  NTAL; acute myeloid leukemia; interactors
    DOI:  https://doi.org/10.1016/j.mcpro.2021.100091
  8. Blood Cancer J. 2021 May 12. 11(5): 88
      Measurable residual disease (MRD) prior to hematopoietic cell transplant (HCT) for acute myeloid leukemia (AML) in first complete morphological remission (CR1) is an independent predictor of outcome, but few studies address CR2. This analysis by the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation registry assessed HCT outcomes by declared MRD status in a cohort of 1042 adult patients with AML CR2 at HCT. Patients were transplanted 2006-2016 from human leukocyte antigen (HLA) matched siblings (n = 719) or HLA 10/10 matched unrelated donors (n = 293). Conditioning was myeloablative (n = 610) or reduced-intensity (n = 432) and 566 patients (54%) had in-vivo T cell depletion. At HCT, 749 patients (72%) were MRD negative (MRD NEG) and 293 (28%) were MRD positive (MRD POS). Time from diagnosis to HCT was longer in MRD NEG than MRD POS patients (18 vs. 16 months (P < 0.001). Two-year relapse rates were 24% (95% CI, 21-28) and 40% (95% CI, 34-46) in MRD NEG and MRD POS groups (P < 0.001), respectively. Leukemia-free survival (LFS) was 57% (53-61) and 46% (40-52%), respectively (P = 0.001), but there was no difference in terms of overall survival. Prognostic factors for relapse and LFS were MRD NEG status, good risk cytogenetics, and longer time from diagnosis to HCT. In-vivo T cell depletion predicted relapse.
    DOI:  https://doi.org/10.1038/s41408-021-00479-3
  9. Leukemia. 2021 May 09.
      Chromosome translocations involving the MLL gene are common rearrangements in leukemia. Such translocations fuse the MLL 5'-region to partner genes in frame, producing MLL-fusions that cause MLL-related leukemia. MLL-fusions activate transcription of target genes such as HoxA cluster and Meis1, but the underlying mechanisms remain to be fully elucidated. In this study, we discovered that Tip60, a MYST-type histone acetyltransferase, was required for the expression of HoxA cluster and Meis1 genes and the development of MLL-fusion leukemia. Tip60 was recruited by MLL-AF10 and MLL-ENL fusions to the Hoxa9 locus, where it acetylated H2A.Z, thereby promoting Hoxa9 gene expression. Conditional deletion of Tip60 prevented the development of MLL-AF10 and MLL-ENL leukemia, indicating that Tip60 is indispensable for the leukemogenic activity of the MLL-AF10 and MLL-ENL-fusions. Our findings provide novel insight about epigenetic regulation in the development of MLL-AF10 and MLL-ENL-fusion leukemia.
    DOI:  https://doi.org/10.1038/s41375-021-01244-y
  10. Nat Commun. 2021 May 11. 12(1): 2656
      Activating mutants of RAS are commonly found in human cancers, but to date selective targeting of RAS in the clinic has been limited to KRAS(G12C) through covalent inhibitors. Here, we report a monobody, termed 12VC1, that recognizes the active state of both KRAS(G12V) and KRAS(G12C) up to 400-times more tightly than wild-type KRAS. The crystal structures reveal that 12VC1 recognizes the mutations through a shallow pocket, and 12VC1 competes against RAS-effector interaction. When expressed intracellularly, 12VC1 potently inhibits ERK activation and the proliferation of RAS-driven cancer cell lines in vitro and in mouse xenograft models. 12VC1 fused to VHL selectively degrades the KRAS mutants and provides more extended suppression of mutant RAS activity than inhibition by 12VC1 alone. These results demonstrate the feasibility of selective targeting and degradation of KRAS mutants in the active state with noncovalent reagents and provide a starting point for designing noncovalent therapeutics against oncogenic RAS mutants.
    DOI:  https://doi.org/10.1038/s41467-021-22969-5
  11. Cancer Biol Ther. 2021 May 12. 1-12
      Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and a catalytic subunit of the polycomb repressive complex 2 (PRC2) that catalyzes the mono-, di-, and tri-methylation of histone H3 at Lys 27 (H3K27me3) to facilitate chromatin-remodeling and gene-silencing functions. Previous reports showed a significant association of EZH2 aberrations in pediatric cancers, such as soft tissue sarcomas and glioblastoma. Recent reports in human subjects and animal models have also suggested a central role of EZH2 in the induction and progression of acute myeloid leukemia. In this study, we aimed to investigate the molecular status of EZH in cell lines derived from distinct pediatric leukemia to assess the efficacy of targeting EZH2 to suppress cancer cell survival and proliferation. Our results showed that EZH2 protein is overexpressed in the pediatric monocytic cell-line THP-1, but not in other leukemia-derived cell lines MV4;11 and SEM. Screening a panel of methyltransferase inhibitors revealed that three inhibitors; GSK126, UNC1999 and EPZ-5687 are the most potent inhibitors that suppressed EZH2 activity selectively on lysine 27 which resulted in increased apoptosis and inhibition of AKT and ERK protein phosphorylation in THP-1 cells. Our data demonstrated a significant increase in apoptosis in cells treated with drug combination (EZH2i and selinexor) compared to EZH2i inhibitors alone. Taken together, our data provide initial evidence that targeting EZH2 is a promising therapeutic strategy for the treatment of subtypes of pediatric AML. Also, combining EZH2 inhibitors with selinexor may increase the treatment efficacy in these patients.
    Keywords:  AML; EZH2; THP-1; hTERT; histone methylation
    DOI:  https://doi.org/10.1080/15384047.2021.1902913
  12. JCO Oncol Pract. 2021 May 12. OP2000904
      PURPOSE: Acute myeloid leukemia (AML) is a rare hematologic malignancy accounting for 0.8% of new cancer diagnoses in Australia. High mortality and morbidity affect work productivity through workforce dropout and premature death. This study sought to estimate the productivity loss attributable to AML in the Australian population over 10 years and to estimate the costs of this productivity loss. Productivity was measured using productivity-adjusted life years (PALYs), a similar concept to quality-adjusted life years, but adjusts for the productivity loss attributable to disease, rather than impaired health.MATERIALS AND METHODS: Dynamic life tables modeled the Australian working population (age 15-65 years) between 2020 and 2029. The model population had two cohorts: those with and without AML. Differences in life years, PALYs, and costs represented the health and productivity impact of AML. Secondary analyses evaluated the impact of different scenarios.
    RESULTS: Over the next 10 years, there will be 7,600 years of life lost and 7,337 PALYs lost because of AML, amounting to Australian dollars (AU$) 1.43 billion in lost gross domestic product ($971 million in US dollars). Secondary analyses highlight potential savings of approximately AU$52 million if survival rates were improved by 20% and almost AU$118 million in savings if the return-to-work rates increased by 20% on the current estimates.
    CONCLUSION: Our study demonstrates that even in low-incidence cancer, high mortality and morbidity translate to profound impacts on years of life, productivity, and the broader economy. Better treatment strategies are likely to result in significant economic gains. This highlights the value of investing in research for improved therapies.
    DOI:  https://doi.org/10.1200/OP.20.00904
  13. Front Oncol. 2021 ;11 632094
      The prognostic impact of Wilms tumor 1 (WT1) mutations remains controversial for patients with acute myeloid leukemia (AML). Here, we aimed to determine the clinical implication of WT1 mutations in a large cohort of pediatric AML. The clinical data of 870 pediatric patients with AML were downloaded from the therapeutically applicable research to generate effective treatment (TARGET) dataset. We analyzed the prevalence, clinical profile, and prognosis of AML patients with WT1 mutations in this cohort. Our results showed that 6.7% of total patients harbored WT1 mutations. These WT1 mutations were closely associated with normal cytogenetics (P<0.001), FMS-like tyrosine kinase 3/internal tandem duplication (FLT3/ITD) mutations (P<0.001), and low complete remission induction rates (P<0.01). Compared to the patients without WT1 mutations, patients with WT1 mutations had a worse 5-year event-free survival (21.7 ± 5.5% vs 48.9 ± 1.8%, P<0.001) and a worse overall survival (41.4 ± 6.6% vs 64.3 ± 1.7%, P<0.001). Moreover, patients with both WT1 and FLT3/ITD mutations had a dismal prognosis. Compared to chemotherapy alone, hematopoietic stem cell transplantation tended to improve the prognoses of WT1-mutated patients. Multivariate analysis demonstrated that WT1 mutations conferred an independent adverse impact on event-free survival (hazard ratio 1.910, P = 0.001) and overall survival (hazard ratio 1.709, P = 0.020). In conclusion, our findings have demonstrated that WT1 mutations are independent poor prognostic factors in pediatric AML.
    Keywords:  FLT3/ITD mutations; WT1 mutations; acute myeloid leukemia; pediatric patients; prognostic factors
    DOI:  https://doi.org/10.3389/fonc.2021.632094
  14. Blood. 2021 May 14. pii: blood.2020008386. [Epub ahead of print]
      How hematopoietic stem cells (HSCs) integrate signals from their environment to make fate decisions remains incompletely understood. Current knowledge is based on either averages of heterogeneous populations or snapshot analyses, both missing important information about the dynamics of intracellular signaling activity. By combining fluorescent biosensors with time-lapse imaging and microfluidics, we measured the activity of the extracellular signal-regulated kinase (ERK) pathway over time (i.e. dynamics) in live single human umbilical cord blood HSCs and multipotent progenitor cells (MPPs). In single cells, ERK signaling dynamics were highly heterogeneous and depended on the cytokines, their combinations, and cell types. ERK signaling was activated by SCF and FLT3L in HSCs, but by SCF, IL3 and GCSF in MPPs. Different cytokines and their combinations led to distinct ERK signaling dynamics frequencies, and ERK dynamics in HSCs were more transient than those in MPPs. A combination of 5 cytokines recently shown to maintain HSCs in long-term culture, had a more-than-additive effect in eliciting sustained ERK dynamics in HSCs. ERK signaling dynamics also predicted future cell fates. E.g. CD45RA expression increased more in HSC daughters with intermediate than with transient or sustained ERK signaling. We demonstrate heterogeneous, cytokine- and cell type- specific ERK signaling dynamics, illustrating their relevance in regulating HSPC fates.
    DOI:  https://doi.org/10.1182/blood.2020008386
  15. Cancer Cell. 2020 12 14. pii: S1535-6108(20)30549-3. [Epub ahead of print]38(6): 776-778
      Venetoclax has changed the clinical outlook for elderly and unfit patients with acute myeloid leukemia, but development of resistance is a challenge. In this issue of Cancer Cell, Bhatt et al. provide a general mechanism for how resistance emerges but also indications for how venetoclax-resistant cases may be treated.
    DOI:  https://doi.org/10.1016/j.ccell.2020.10.018
  16. Blood. 2021 May 11. pii: blood.2020008948. [Epub ahead of print]
      Systemic mastocytosis (SM) is a KIT-driven hematopoietic neoplasm characterized by the excessive accumulation of neoplastic mast cells (MCs) in various organs and, mainly, the bone marrow (BM). Multiple genetic and epigenetic mechanisms contribute to the onset and severity of SM. However, little is known to date about the metabolic underpinnings underlying SM aggressiveness, which has thus far impeded the development of strategies to leverage metabolic dependencies when existing KIT-targeted treatments fail. Here, we show that plasma metabolomic profiles were able to discriminate indolent from advanced forms of the disease. We identified N-acetyl-D-glucosamine (GlcNAc) as the most predictive metabolite of SM severity. High plasma levels of GlcNAc in patients with advanced SM correlated with the activation of the GlcNAc-fed hexosamine biosynthesis pathway (HBP) in patients BM aspirates and purified BM MCs. At the functional level, GlcNAc enhanced human neoplastic MCs proliferation and promoted rapid health deterioration in a humanized mouse model of SM. In addition, in the presence of GlcNAc, immunoglobulin E-stimulated MCs triggered enhanced release of proinflammatory cytokines and a stronger acute response in a mouse model of passive cutaneous anaphylaxis. Mechanistically, elevated GlcNAc levels promoted the transcriptional accessibility of chromatin regions that contain genes encoding mediators of receptor tyrosine kinases cascades and inflammatory responses, thus leading to a more aggressive phenotype. Therefore, GlcNAc is an oncometabolite driver of SM aggressiveness. This study suggests the therapeutic potential for targeting metabolic pathways in MC-related diseases to manipulate MCs effector functions.
    DOI:  https://doi.org/10.1182/blood.2020008948
  17. Front Pediatr. 2021 ;9 639479
      Childhood leukemias are heterogeneous diseases with widely differing incident rates worldwide. As circulating tumors, childhood acute leukemias are uniquely accessible, and their natural history has been described in greater detail than for solid tumors. For several decades, it has been apparent that most cases of childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) initiate in utero. Circumstantial evidence in support of this contention includes the young age of onset and high rate of concordance among identical twins. "Backtracking" of leukemic somatic mutations, particularly gene translocations, to cord blood and dried blood spots collected during the perinatal period has provided molecular proof of prenatal leukemogenesis. Detection of a patient's leukemia translocation in easily accessible birth samples, such as dried blood spots, is straightforward with the knowledge of their idiosyncratic breakpoints. However, to translate these findings into population-based screening and leukemia prevention requires novel methods able to detect translocations at all possible breakpoints when present in a low frequency of cells. Several studies have attempted to screen for leukemic translocations, mainly the common ETV6-RUNX1 translocation, in cord blood samples from healthy children. Most studies have reported finding translocations in healthy children, but estimates of prevalence have varied widely and greatly exceed the incidence of leukemia, leading to concerns that technical artifact or contamination produced an artificially inflated estimate of translocation prevalence at birth. New generation techniques that capture the presence of these translocations at birth have the potential to vastly increase our understanding of the epidemiology of acute leukemias. For instance, if leukemic translocations are present at birth in a far higher proportion of children than eventually develop acute leukemia, what are the exposures and somatic molecular events that lead to disease? And could children with translocations present at birth be targeted for prevention of disease? These questions must be answered before large-scale newborn screening for leukemia can occur as a public health initiative. Here, we review the literature regarding backtracking of acute leukemias and the prevalence of leukemic translocations at birth. We further suggest an agenda for epidemiologic research using new tools for population screening of leukemic translocations.
    Keywords:  childhood leukemia; epidemiology; leukemia; newborns; screening; translocation
    DOI:  https://doi.org/10.3389/fped.2021.639479
  18. BMC Med Genomics. 2021 May 13. 14(1): 127
      BACKGROUND: This study aimed to determine and verify the prognostic value and potential functional mechanism of signal recognition particle 14 (SRP14) in acute myeloid leukemia (AML) using a genome-wide expression profile dataset.METHODS: We obtained an AML genome-wide expression profile dataset and clinical prognostic data from The Cancer Genome Atlas (TCGA) and GSE12417 databases, and explored the prognostic value and functional mechanism of SRP14 in AML using survival analysis and various online tools.
    RESULTS: Survival analysis showed that AML patients with high SRP14 expression had poorer overall survival than patients with low SRP14 expression. Time-dependent receiver operating characteristic curves indicated that SRP14 had good accuracy for predicting the prognosis in patients with AML. Genome-wide co-expression analysis suggested that SRP14 may play a role in AML by participating in the regulation of biological processes and signaling pathways, such as cell cycle, cell adhesion, mitogen-activated protein kinase, tumor necrosis factor, T cell receptor, DNA damage response, and nuclear factor-kappa B (NF-κB) signaling. Gene set enrichment analysis indicated that SRP14 was significantly enriched in biological processes and signaling pathways including regulation of hematopoietic progenitor cell differentiation and stem cell differentiation, intrinsic apoptotic signaling pathway by p53 class mediator, interleukin-1, T cell mediated cytotoxicity, and NF-κB-inducing kinase/NF-κB signaling. Using the TCGA AML dataset, we also identified four drugs (phenazone, benzydamine, cinnarizine, antazoline) that may serve as SRP14-targeted drugs in AML.
    CONCLUSION: The current results revealed that high SRP14 expression was significantly related to a poor prognosis and may serve as a prognostic biomarker in patients with AML.
    Keywords:  Acute myeloid leukemia; GSE12417; Prognosis; Signal recognition particle 14; The Cancer Genome Atlas
    DOI:  https://doi.org/10.1186/s12920-021-00975-2
  19. Cell Rep. 2021 May 11. pii: S2211-1247(21)00458-7. [Epub ahead of print]35(6): 109119
      The bone-marrow (BM) niche is the spatial environment composed by a network of multiple stromal components regulating adult hematopoiesis. We use multi-omics and computational tools to analyze multiple BM environmental compartments and decipher their mutual interactions in the context of acute myeloid leukemia (AML) xenografts. Under homeostatic conditions, we find a considerable overlap between niche populations identified using current markers. Our analysis defines eight functional clusters of genes informing on the cellular identity and function of the different subpopulations and pointing at specific stromal interrelationships. We describe how these transcriptomic profiles change during human AML development and, by using a proximity-based molecular approach, we identify early disease onset deregulated genes in the mesenchymal compartment. Finally, we analyze the BM proteomic secretome in the presence of AML and integrate it with the transcriptome to predict signaling nodes involved in niche alteration in AML.
    DOI:  https://doi.org/10.1016/j.celrep.2021.109119
  20. Nat Commun. 2021 May 14. 12(1): 2833
      Blast crisis (BC) predicts dismal outcomes in patients with chronic myeloid leukaemia (CML). Although additional genetic alterations play a central role in BC, the landscape and prognostic impact of these alterations remain elusive. Here, we comprehensively investigate genetic abnormalities in 136 BC and 148 chronic phase (CP) samples obtained from 216 CML patients using exome and targeted sequencing. One or more genetic abnormalities are found in 126 (92.6%) out of the 136 BC patients, including the RUNX1-ETS2 fusion and NBEAL2 mutations. The number of genetic alterations increase during the transition from CP to BC, which is markedly suppressed by tyrosine kinase inhibitors (TKIs). The lineage of the BC and prior use of TKIs correlate with distinct molecular profiles. Notably, genetic alterations, rather than clinical variables, contribute to a better prediction of BC prognosis. In conclusion, genetic abnormalities can help predict clinical outcomes and can guide clinical decisions in CML.
    DOI:  https://doi.org/10.1038/s41467-021-23097-w
  21. Nat Commun. 2021 May 14. 12(1): 2792
      ASH1L histone methyltransferase plays a crucial role in the pathogenesis of different diseases, including acute leukemia. While ASH1L represents an attractive drug target, developing ASH1L inhibitors is challenging, as the catalytic SET domain adapts an inactive conformation with autoinhibitory loop blocking the access to the active site. Here, by applying fragment-based screening followed by medicinal chemistry and a structure-based design, we developed first-in-class small molecule inhibitors of the ASH1L SET domain. The crystal structures of ASH1L-inhibitor complexes reveal compound binding to the autoinhibitory loop region in the SET domain. When tested in MLL leukemia models, our lead compound, AS-99, blocks cell proliferation, induces apoptosis and differentiation, downregulates MLL fusion target genes, and reduces the leukemia burden in vivo. This work validates the ASH1L SET domain as a druggable target and provides a chemical probe to further study the biological functions of ASH1L as well as to develop therapeutic agents.
    DOI:  https://doi.org/10.1038/s41467-021-23152-6
  22. Front Immunol. 2021 ;12 665541
      Natural killer (NK) cells are key innate immunity effectors that play a major role in malignant cell destruction. Based on expression patterns of CD16, CD56, CD57, and CD94, three distinct NK cell maturation stages have been described, which differ in terms of cytokine secretion, tissue migration, and the ability to kill target cells. Our study addressed NK cell maturation in bone marrow under three conditions: a normal developmental environment, during pre-leukemic state (myelodysplastic syndrome, MDS), and during leukemic transformation (acute myeloblastic leukemia, AML). In this study, we used a new tool to perform multicolor flow cytometry data analysis, based on principal component analysis, which allowed the unsupervised, accurate discrimination of immature, mature, and hypermature NK subpopulations. An impaired NK/T cell distribution was observed in the MDS bone marrow microenvironment compared with the normal and AML settings, and a phenotypic shift from the mature to the immature state was observed in NK cells under both the MDS and AML conditions. Furthermore, an impaired NK cell antitumor response, resulting in changes in NK cell receptor expression (CD159a, CD158a, CD158b, and CD158e1), was observed under MDS and AML conditions compared with the normal condition. The results of this study provide evidence for the failure of this arm of the immune response during the pathogenesis of myeloid malignancies. NK cell subpopulations display a heterogeneous and discordant dynamic on the spectrum between normal and pathological conditions. MDS does not appear to be a simple, intermediate stage but rather serves as a decisive step for the mounting of an efficient or ineffective immune response, leading to either the removal of the tumor cells or to malignancy.
    Keywords:  acute myeloid leukemia; bone marrow; inhibitory receptors; killer immunoglobulin-like receptors; myelodysplastic syndrome; natural killer cell maturation; natural killer cells
    DOI:  https://doi.org/10.3389/fimmu.2021.665541
  23. Cancer Med. 2021 May 14.
      BACKGROUND: Tyrosine kinase inhibitors (TKI) can be safely discontinued in chronic phase chronic myeloid leukemia (CP-CML) patients who had achieved a sustained deep molecular response. Based on the results of discontinuation trials, recommendations regarding patient selection for a treatment-free remission (TFR) attempt had been proposed. The aims of this study were to evaluate the rate of patients eligible for TKI discontinuation and molecular recurrence-free survival (MRFS) after stop according to recommendations.METHODS: Over a 10-year period, newly diagnosed CP-CML patients and treated with first-line TKI in the nine French participating centers were included. Eligibility to treatment discontinuation and MRFS were analyzed and compared according to selection criteria defined by recommendations and first-line treatments.
    RESULTS: From January 2006 to December 2015, 398 patients were considered. Among them, 73% and 27% of patients received imatinib or either second or third generation tyrosine kinase inhibitors as frontline treatment, respectively. Considering the selection criteria defined by recommendations, up to 55% of the patients were selected as optimal candidates for treatment discontinuation. Overall 95/398 (24%) discontinued treatment. MRFS was 51.8% [95% CI 41.41-62.19] at 2 years and 43.8% [31.45-56.15] at 5 years. Patients receiving frontline second-generation TKI and fulfilling the eligibility criteria suggested by recommendations had the lowest probability of molecular relapse after TKI stop when compare to others.
    CONCLUSION: One third of CP-CML patients treated with TKI frontline fulfilled the selection criteria suggested by European LeukemiaNet TFR recommendations. Meeting selection criteria and second-generation TKI frontline were associated with the highest MRFS.
    Keywords:  molecular recurrence-free survival; recommendations; tyrosine kinase inhibitor discontinuation
    DOI:  https://doi.org/10.1002/cam4.3921
  24. Clin Transl Immunology. 2021 ;10(5): e1282
      Objectives: As the prognosis of relapsed/refractory (R/R) acute myeloid leukaemia (AML) remains poor, novel treatment strategies are urgently needed. Clinical trials have shown that chimeric antigen receptor (CAR)-T cells for AML are more challenging than those targeting CD19 in B-cell malignancies. We recently developed piggyBac-modified ligand-based CAR-T cells that target CD116/CD131 complexes, also known as the GM-CSF receptor (GMR), for the treatment of juvenile myelomonocytic leukaemia. This study therefore aimed to develop a novel therapeutic method for R/R AML using GMR CAR-T cells.Methods: To further improve the efficacy of the original GMR CAR-T cells, we have developed novel GMR CAR vectors incorporating a mutated GM-CSF for the antigen-binding domain and G4S spacer. All GMR CAR-T cells were generated using a piggyBac-based gene transfer system. The anti-tumor effect of GMR CAR-T cells was tested in mouse AML xenograft models.
    Results: Nearly 80% of the AML cells predominant in myelomonocytic leukaemia were found to express CD116. GMR CAR-T cells exhibited potent cytotoxic activities against CD116+ AML cells in vitro. Furthermore, GMR CAR-T cells incorporating a G4S spacer significantly improved long-term in vitro and in vivo anti-tumor effects. By employing a mutated GM-CSF at residue 21 (E21K), the anti-tumor effects of GMR CAR-T cells were also improved especially in long-term in vitro settings. Although GMR CAR-T cells exerted cytotoxic effects on normal monocytes, their lethality on normal neutrophils, T cells, B cells and NK cells was minimal.
    Conclusions: GMR CAR-T cell therapy represents a promising strategy for CD116+ R/R AML.
    Keywords:  AML; CD116; GMR; GM‐CSF; GM‐CSF receptor; low affinity
    DOI:  https://doi.org/10.1002/cti2.1282
  25. Science. 2021 May 14. 372(6543): 716-721
      Transcription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). This rescue depends on the functional link of DHODH to mitochondrial respiration. The transcription elongation factor TIF1γ directly controls coenzyme Q (CoQ) synthesis gene expression. Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage.
    DOI:  https://doi.org/10.1126/science.aaz2740
  26. Clin Adv Hematol Oncol. 2021 Apr;19(4): 207-208
      
  27. Nature. 2021 May 12.
      The ontogeny of the human haematopoietic system during fetal development has previously been characterized mainly through careful microscopic observations1. Here we reconstruct a phylogenetic tree of blood development using whole-genome sequencing of 511 single-cell-derived haematopoietic colonies from healthy human fetuses at 8 and 18 weeks after conception, coupled with deep targeted sequencing of tissues of known embryonic origin. We found that, in healthy fetuses, individual haematopoietic progenitors acquire tens of somatic mutations by 18 weeks after conception. We used these mutations as barcodes and timed the divergence of embryonic and extra-embryonic tissues during development, and estimated the number of blood antecedents at different stages of embryonic development. Our data support a hypoblast origin of the extra-embryonic mesoderm and primitive blood in humans.
    DOI:  https://doi.org/10.1038/s41586-021-03548-6
  28. Hematology. 2021 Dec;26(1): 371-379
      OBJECTIVES: The outcome of elderly acute myeloid leukemia (AML) patients is poor, which was traditionally attributed to patient- and leukemia-related factors. However, studies about the genetic features of these elderly patients have not been integrated and the genetic mechanism of their poor outcome is less known.METHODS: Here, we used next generation sequencing (NGS) to identify the genetic features of elderly AML patients and confirmed the efficacy of chemotherapy based on molecular aberrations. Mutations in 111 genes relevant to hematological malignancy was analysed by virtue of NGS and the genetic differences were compared between elderly (n=52) and young (n=161) AML patients. Furthermore, the outcome of decitabine-based chemotherapy was identified in elderly patients.
    RESULTS: Frequencies of adverse genetic alterations, such as RUNX1 and secondary-type mutations (ASXL1, STAG2 and spliceosome), were much higher in elderly patients, while the frequency of WT1 mutations was much lower. Moreover, epigenetic mutations such as DNMT3A, TET2, ASXL1 and IDH2, were also more common in elderly patients. Furthermore, there were 39 elderly patients receiving the decitabine-based chemotherapy, and the results showed that the overall response rate (ORR) and complete remission rate (CR) were 76.9% and 71.8%, respectively. The median overall survival (OS) for those older patients was 12 months, and the 2-year OS probability was 20.5%.
    DISCUSSION: Our study provides deep understanding into the molecular mechanisms of the poor outcome of elderly AML patients.
    CONCLUSION: Epigenetic mutations play an important role, and decitabine-based regimen can be used as alternative first-line chemotherapy for elderly patients.
    Keywords:  Acute myeloid leukemia; clinical outcome; decitabine-based chemotherapy; elderly patients; epigenetic mutations; genetic features; mutational analysis; next generation sequencing
    DOI:  https://doi.org/10.1080/16078454.2021.1921434
  29. Nat Commun. 2021 May 14. 12(1): 2804
      Chemotherapy remains the standard of care for most cancers worldwide, however development of chemoresistance due to the presence of the drug-effluxing ATP binding cassette (ABC) transporters remains a significant problem. The development of safe and effective means to overcome chemoresistance is critical for achieving durable remissions in many cancer patients. We have investigated the energetic demands of ABC transporters in the context of the metabolic adaptations of chemoresistant cancer cells. Here we show that ABC transporters use mitochondrial-derived ATP as a source of energy to efflux drugs out of cancer cells. We further demonstrate that the loss of methylation-controlled J protein (MCJ) (also named DnaJC15), an endogenous negative regulator of mitochondrial respiration, in chemoresistant cancer cells boosts their ability to produce ATP from mitochondria and fuel ABC transporters. We have developed MCJ mimetics that can attenuate mitochondrial respiration and safely overcome chemoresistance in vitro and in vivo. Administration of MCJ mimetics in combination with standard chemotherapeutic drugs could therefore become an alternative strategy for treatment of multiple cancers.
    DOI:  https://doi.org/10.1038/s41467-021-23071-6
  30. Sci Rep. 2021 May 11. 11(1): 10017
      Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) genes occur in about 20% patients with acute myeloid leukemia (AML), leading to DNA hypermethylation and epigenetic deregulation. We assessed the prognostic significance of IDH1/2 mutations (IDH1/2+) in 398 AML patients with normal karyotype (NK-AML), treated with daunorubicine + cytarabine (DA), DA + cladribine (DAC), or DA + fludarabine. IDH2 mutation was an independent favorable prognostic factor for 4-year overall survival (OS) in total NK-AML population (p = 0.03, censoring at allotransplant). We next evaluated the effect of addition of cladribine to induction regimen on the patients' outcome according to IDH1/2 mutation status. In DAC group, 4-year OS was increased in IDH2+ patients, compared to IDH-wild type group (54% vs 33%; p = 0.0087, censoring at allotransplant), while no difference was observed for DA-treated subjects. In multivariate analysis, DAC independently improved the survival of IDH2+ patients (HR = 0.6 [0.37-0.93]; p = 0.024; censored at transplant), indicating that this group specifically benefits from cladribine-containing therapy. In AML cells with R140Q or R172K IDH2 mutations, cladribine restrained mutations-related DNA hypermethylation. Altogether, DAC regimen produces better outcomes in IDH2+ NK-AML patients than DA, and this likely results from the hypomethylating activity of cladribine. Our observations warrant further investigations of induction protocols combining cladribine with IDH1/2 inhibitors in IDH2-mutant.
    DOI:  https://doi.org/10.1038/s41598-021-88120-y