bims-tremyl Biomed News
on Therapy resistance biology in myeloid leukemia
Issue of 2021‒04‒04
twenty-six papers selected by
Paolo Gallipoli
Barts Cancer Institute, Queen Mary University of London


  1. Blood Adv. 2021 Apr 13. 5(7): 1876-1883
      Assessment of measurable residual disease (MRD) provides prognostic information in acute myeloid leukemia (AML). However, the utility of MRD with venetoclax-based lower intensity regimens is unknown. We analyzed the prognostic value of achieving a negative MRD in older/"unfit" patients with AML receiving first-line therapy with 10-day decitabine and venetoclax. MRD was evaluated in bone marrow specimens using multicolor flow cytometry (sensitivity 0.1%). Ninety-seven patients achieving either a complete remission (CR) or CR with incomplete hematologic recovery (CRi) or morphologic leukemia-free state were included. Median age was 72 years (interquartile range, 68-78 years), and 64% had adverse-risk AML. Eighty-three patients achieved CR/CRi, and 52 (54%) became MRD negative. Median time to becoming MRD negative was 2.0 months (interquartile range, 0.9-3.1 months). Patients becoming MRD negative by 2 months had longer relapse-free survival (RFS) compared with those remaining MRD positive (median RFS, not reached vs 5.2 months; hazard ratio [HR], 0.31; 95% confidence interval [CI], 0.12-0.78; P = .004), longer event-free survival (EFS) (median EFS, not reached vs 5.8 months; HR, 0.25; 95% CI, 0.12-0.55; P < .001), as well as longer overall survival (OS) (median OS, 25.1 vs 7.1 months; HR, 0.23; 95% CI, 0.11-0.51; P < .001). Patients achieving an MRD-negative CR had longer OS compared with those with an inferior response (median OS, 25.1 vs 11.6 months; HR, 0.33; 95% CI, 0.19-0.58; P < .0005). Patients becoming MRD negative within 1 month had an improved OS compared with MRD-positive patients (median OS, 25.1 vs 3.4 months; HR, 0.15; 95% CI, 0.03-0.64; P < .0001). Differential impact of MRD status on survival outcomes persisted at a later 4-month time point of evaluation. In conclusion, MRD-negative status at 1, 2, and 4 months after starting therapy confers significantly better survival in older/unfit patients with AML receiving first-line therapy with 10-day decitabine and venetoclax. This trial was registered at www.clinicaltrials.gov as #NCT03404193.
    DOI:  https://doi.org/10.1182/bloodadvances.2020003717
  2. Ann Hematol. 2021 Mar 31.
      FLT3 mutations, which are found in a third of patients with acute myeloid leukemia (AML), are associated with poor prognosis. Responses to currently available FLT3 inhibitors in AML patients are typically transient and followed by disease recurrence. Thus, FLT3 inhibitors with new inhibitory mechanisms are needed to improve therapeutic outcomes. AMG925 is a novel, potent, small-molecule dual inhibitor of FLT3 and CDK4/6. In this study. we determined the antileukemic effects and mechanisms of action of AMG925 in AML cell lines and primary samples, in particular AML stem/progenitor cells. AMG925 inhibited cell growth and promoted apoptosis in AML cells with or without FLT3 mutations. Reverse-phase protein array profiling confirmed its on-target effects on FLT3-CDK4/6-regulated pathways and identified unrevealed signaling network alterations in AML blasts and stem/progenitor cells in response to AMG925. Mass cytometry identified pathways that may confer resistance to AMG925 in phenotypically defined AML stem/progenitor cells and demonstrated that combined blockade of FLT3-CDK4/6 and AKT/mTOR signaling facilitated stem cell death. Our findings provide a rationale for the mechanism-based inhibition of FLT3-CDK4/6 and for combinatorial approaches to improve the efficacy of FLT3 inhibition in both FLT3 wild-type and FLT3-mutated AML.
    Keywords:  AML; FLT3-CDK4/6 kinase; Proteomic profiling
    DOI:  https://doi.org/10.1007/s00277-021-04493-0
  3. Front Oncol. 2021 ;11 632623
      Acute myeloid leukemia (AML) is a heterogeneous disease with poor clinical outcomes. We have previously shown that constitutive activation of NADPH oxidase 2 (NOX2), resulting in over-production of reactive oxygen species (ROS), occurs in over 60% of AML patients. We have also shown that increased ROS production promotes increased glucose uptake and proliferation in AML cells, mediated by changes in carbohydrate metabolism. Given that carbohydrate, lipid, and protein metabolisms are all intricately interconnected, we aimed to examine the effect of cellular ROS levels on these pathways and establish further evidence that ROS rewires metabolism in AML. We carried out metabolomic profiling of AML cell lines in which NOX2-derived ROS production was inhibited and conversely in cells treated with exogenous H2O2. We report significant ROS-specific metabolic alterations in sphingolipid metabolism, fatty acid oxidation, purine metabolism, amino acid homeostasis and glycolysis. These data provide further evidence of ROS directed metabolic changes in AML and the potential for metabolic targeting as novel therapeutic arm to combat this disease.
    Keywords:  NADPH Oxidase (NOX); acute myeloid leukemia; metabolism; reactive oxygen species; redox signaling
    DOI:  https://doi.org/10.3389/fonc.2021.632623
  4. Cancer Drug Resist. 2021 ;4 125-142
      Despite the success of the combination of venetoclax with the hypomethylating agents (HMA) decitabine or azacitidine in inducing remission in older, previously untreated patients with acute myeloid leukemia (AML), resistance - primary or secondary - still constitutes a significant roadblock in the quest to prolong the duration of response. Here we review the proposed and proven mechanisms of resistance to venetoclax monotherapy, HMA monotherapy, and the doublet of venetoclax and HMA for the treatment of AML. We approach the mechanisms of resistance to HMAs and venetoclax in the light of the agents' mechanisms of action. We briefly describe potential therapeutic strategies to circumvent resistance to this promising combination, including alternative scheduling or the addition of other agents to the HMA and venetoclax backbone. Understanding the mechanisms of action and evolving resistance in AML remains a priority in order to maximize the benefit from novel drugs and combinations, identify new therapeutic targets, define potential prognostic markers, and avoid treatment failure.
    Keywords:  Venetoclax; acute myeloid leukemia; azacitidine; decitabine; hypomethylating agents; resistance
    DOI:  https://doi.org/10.20517/cdr.2020.95
  5. Sci Transl Med. 2021 Mar 31. pii: eabg1168. [Epub ahead of print]13(587):
      The development and survival of cancer cells require adaptive mechanisms to stress. Such adaptations can confer intrinsic vulnerabilities, enabling the selective targeting of cancer cells. Through a pooled in vivo short hairpin RNA (shRNA) screen, we identified the adenosine triphosphatase associated with diverse cellular activities (AAA-ATPase) valosin-containing protein (VCP) as a top stress-related vulnerability in acute myeloid leukemia (AML). We established that AML was the most responsive disease to chemical inhibition of VCP across a panel of 16 cancer types. The sensitivity to VCP inhibition of human AML cell lines, primary patient samples, and syngeneic and xenograft mouse models of AML was validated using VCP-directed shRNAs, overexpression of a dominant-negative VCP mutant, and chemical inhibition. By combining mass spectrometry-based analysis of the VCP interactome and phospho-signaling studies, we determined that VCP is important for ataxia telangiectasia mutated (ATM) kinase activation and subsequent DNA repair through homologous recombination in AML. A second-generation VCP inhibitor, CB-5339, was then developed and characterized. Efficacy and safety of CB-5339 were validated in multiple AML models, including syngeneic and patient-derived xenograft murine models. We further demonstrated that combining DNA-damaging agents, such as anthracyclines, with CB-5339 treatment synergizes to impair leukemic growth in an MLL-AF9-driven AML murine model. These studies support the clinical testing of CB-5339 as a single agent or in combination with standard-of-care DNA-damaging chemotherapy for the treatment of AML.
    DOI:  https://doi.org/10.1126/scitranslmed.abg1168
  6. Cancer. 2021 Apr 01.
      BACKGROUND: Venetoclax (VEN) combined with the hypomethylating agent (HMA) azacitidine improves survival in patients aged ≥75 years with newly diagnosed acute myeloid leukemia (AML). VEN and HMA treatment can result in prolonged and often profound neutropenia, and this warrants antifungal prophylaxis. Azole antifungals inhibit cytochrome P450 3A4, the primary enzyme responsible for VEN metabolism; this results in VEN dose reductions for each concomitant antifungal. Limited clinical data exist on outcomes for patients treated with VEN, an HMA, and various azoles.METHODS: The time to neutrophil recovery (absolute neutrophil count [ANC] > 1000 cells/mm3 ) and platelet (PLT) recovery (PLT count > 100,000 cells/mm3 ) in 64 patients with newly diagnosed AML who achieved a response after course 1 of VEN plus an HMA were evaluated. HMA therapy included azacitidine (75 mg/m2 intravenously/subcutaneously for 7 days) or decitabine (20 mg/m2 intravenously for 5 or 10 days).
    RESULTS: Forty-seven patients (73%) received an azole: posaconazole (n = 17; 27%), voriconazole (n = 9; 14%), isavuconazole (n = 20; 31%), or fluconazole (n = 1; 2%). The median time to ANC recovery were similar for patients who did receive an azole (37 days; 95% confidence interval [CI], 34-38 days) and patients who did not receive an azole (39 days; 95% CI, 30 days to not estimable; P = .8). The median time to PLT recovery was significantly longer for patients receiving azoles (28 vs 22 days; P = .01). The median times to ANC recovery (35 vs 38 days) and PLT recovery (26 vs 32 days) were similar with posaconazole and voriconazole.
    CONCLUSIONS: VEN plus an HMA resulted in neutropenia and thrombocytopenia, with the latter prolonged in patients receiving concomitant azoles. Concomitant posaconazole or voriconazole and VEN (100 mg) resulted in similar ANC and PLT recovery times, suggesting the safety of these dosage combinations during course 1.
    Keywords:  acute myeloid leukemia; azole antifungals; invasive fungal infection; prophylaxis; venetoclax
    DOI:  https://doi.org/10.1002/cncr.33508
  7. Cancers (Basel). 2021 Mar 25. pii: 1509. [Epub ahead of print]13(7):
      Extracellular protein release is important both for the formation of extracellular matrix and for communication between cells. We investigated the extracellular protein release by in vitro cultured normal mesenchymal stem cells (MSCs) and by primary human acute myeloid leukemia (AML) cells derived from 40 consecutive patients. We observed quantifiable levels of 3082 proteins in our study; for the MSCs, we detected 1446 proteins, whereas the number of released proteins for the AML cells showed wide variation between patients (average number 1699, range 557-2380). The proteins were derived from various cellular compartments (e.g., cell membrane, nucleus, and cytoplasms), several organelles (e.g., cytoskeleton, endoplasmatic reticulum, Golgi apparatus, and mitochondria) and had various functions (e.g., extracellular matrix and exosomal proteins, cytokines, soluble adhesion molecules, protein synthesis, post-transcriptional modulation, RNA binding, and ribonuclear proteins). Thus, AML patients were very heterogeneous both regarding the number of proteins and the nature of their extracellularly released proteins. The protein release profiles of MSCs and primary AML cells show a considerable overlap, but a minority of the proteins are released only or mainly by the MSC, including several extracellular matrix molecules. Taken together, our observations suggest that the protein profile of the extracellular bone marrow microenvironment differs between AML patients, these differences are mainly caused by the protein release by the leukemic cells but this leukemia-associated heterogeneity of the overall extracellular protein profile is modulated by the constitutive protein release by normal MSCs.
    Keywords:  acute myeloid leukemia; conditioned medium; extracellular protein release; mesenchymal stem cells; patient heterogeneity; protein; proteomics
    DOI:  https://doi.org/10.3390/cancers13071509
  8. Sci Rep. 2021 Mar 31. 11(1): 7288
      Acute myeloid leukemia (AML) is a high-risk malignancy characterized by a diverse spectrum of somatic genetic alterations. The mechanisms by which these mutations contribute to leukemia development and how this informs the use of targeted therapies is critical to improving outcomes for patients. Importantly, how to target loss-of-function mutations has been a critical challenge in precision medicine. Heterozygous inactivating mutations in cohesin complex genes contribute to AML in adults by increasing the self-renewal capacity of hematopoietic stem and progenitor cells (HSPCs) by altering PRC2 targeting to induce HOXA9 expression, a key self-renewal transcription factor. Here we sought to delineate the epigenetic mechanism underpinning the enhanced self-renewal conferred by cohesin-haploinsufficiency. First, given the substantial difference in the mutational spectrum between pediatric and adult AML patients, we first sought to identify if HOXA9 was also elevated in children. Next, using primary HSPCs as a model we demonstrate that abnormal self-renewal due to cohesin loss is blocked by DOT1L inhibition. In cohesin-depleted cells, DOT1L inhibition is associated with H3K79me2 depletion and a concomitant increase in H3K27me3. Importantly, we find that there are cohesin-dependent gene expression changes that promote a leukemic profile, including HoxA overexpression, that are preferentially reversed by DOT1L inhibition. Our data further characterize how cohesin mutations contribute to AML development, identifying DOT1L as a potential therapeutic target for adult and pediatric AML patients harboring cohesin mutations.
    DOI:  https://doi.org/10.1038/s41598-021-86646-9
  9. Leukemia. 2021 Mar 29.
      Despite recent approval of targeted drugs for acute myeloid leukemia (AML) therapy, chemotherapy with cytosine arabinoside and anthracyclines remains an important pillar of treatment. Both primary and secondary resistance are frequent and associated with poor survival, yet the underlying molecular mechanisms are incompletely understood. In previous work, we identified genes deregulated between diagnosis and relapse of AML, corresponding to therapy naïve and resistant states, respectively. Among them was MTSS1, whose downregulation is known to enhance aggressiveness of solid tumors. Here we show that low MTSS1 expression at diagnosis was associated with a poor prognosis in AML. MTSS1 expression was regulated by promoter methylation, and reduced by cytosine arabinoside and the anthracycline daunorubicin. Experimental downregulation of MTSS1 affected the expression of numerous genes. It induced the DNA damage response kinase WEE1, and rendered human AML cell lines more resistant to cytosine arabinoside, daunorubicin, and other anti-cancer drugs. Mtss1 knockdown in murine MLL-AF9-driven AML substantially decreased disease latency, and increased leukemic burden and ex vivo chemotherapy resistance. In summary, low MTSS1 expression represents a novel factor contributing to disease aggressiveness, therapy resistance, and poor outcome in AML.
    DOI:  https://doi.org/10.1038/s41375-021-01224-2
  10. Molecules. 2021 Mar 02. pii: 1323. [Epub ahead of print]26(5):
      Deregulations of the expression of the S100A8 and S100A9 genes and/or proteins, as well as changes in their plasma levels or their levels of secretion in the bone marrow microenvironment, are frequently observed in acute myeloblastic leukemias (AML) and acute lymphoblastic leukemias (ALL). These deregulations impact the prognosis of patients through various mechanisms of cellular or extracellular regulation of the viability of leukemic cells. In particular, S100A8 and S100A9 in monomeric, homodimeric, or heterodimeric forms are able to modulate the survival and the sensitivity to chemotherapy of leukemic clones through their action on the regulation of intracellular calcium, on oxidative stress, on the activation of apoptosis, and thanks to their implications, on cell death regulation by autophagy and pyroptosis. Moreover, biologic effects of S100A8/9 via both TLR4 and RAGE on hematopoietic stem cells contribute to the selection and expansion of leukemic clones by excretion of proinflammatory cytokines and/or immune regulation. Hence, the therapeutic targeting of S100A8 and S100A9 appears to be a promising way to improve treatment efficiency in acute leukemias.
    Keywords:  S100A8/S100A9; acute lymphoid leukemia; acute myeloid leukemia; inflammation in cancer
    DOI:  https://doi.org/10.3390/molecules26051323
  11. Oncol Lett. 2021 May;21(5): 397
      AXL receptor tyrosine kinase (AXL) upregulation mediates drug resistance in several types of human cancer and has become a therapeutic target worthy of exploration. The present study investigated AXL antigen expression and the effects of novel AXL-targeted agents in acute myeloid leukemia (AML) cells. AXL antigen expression in drug-sensitive and drug-resistant human AML cell lines, and AML blast cells from 57 patients with different clinical characteristics, was analyzed by flow cytometry and compared. Furthermore, the effects of the novel AXL antibody DAXL-88, antibody-drug conjugate DAXL-88-monomethyl auristatin E (MMAE), AXL small molecule inhibitor R428 and their combination with FMS-like tyrosine kinase 3 (FLT3) inhibitor quizartinib (AC220) in AML cells were analyzed by Cell Counting Kit-8 assay, flow cytometry and western blotting. The present study revealed that AXL antigen expression was upregulated in FLT3-internal tandem duplication (ITD)/tyrosine kinase domain mutation-positive (TKD)+ AML blast cells compared with FLT3-ITD/TKD- AML cells. Additionally, AXL antigen expression was markedly upregulated in the AC220-resistant FLT3-ITD+ MV4-11 cell line (MV4-11/AC220) and in FLT3 inhibitor-resistant blast cells from a patient with FLT3-ITD+ AML compared with parental sensitive cells. The AXL-targeted agents DAXL-88, DAXL-88-MMAE and R428 exhibited dose-dependent cytotoxic effects on FLT3-mutant AML cell lines (THP-1, MV4-11 and MV4-11/AC220) and blast cells from patients with FLT3-ITD+ AML. Combinations of AXL-targeted agents with AC220 exerted synergistic cytotoxic effects and induced apoptosis in MV4-11/AC220 cells and FLT3 inhibitor-resistant blast cells. The antileukemic effect of DAXL-88 and DAXL-88-MMAE may rely on their ability to block AXL, FLT3 and their downstream signaling pathways. The present study demonstrated the association between AXL antigen expression upregulation and drug resistance in FLT3-ITD+ AML, and proposed a method for overcoming FLT3 inhibitor resistance of FLT3-ITD+ AML using novel AXL-targeted agents.
    Keywords:  AXL receptor tyrosine kinase small-molecule inhibitor; FLT3 mutations; acute myeloid leukemia; anti-AXL receptor tyrosine kinase antibody; drug resistance; synergistic cytotoxic effect
    DOI:  https://doi.org/10.3892/ol.2021.12658
  12. Blood. 2021 Mar 30. pii: blood.2020007651. [Epub ahead of print]
      The abundance of genetic abnormalities and phenotypic heterogeneities in AML pose significant challenges to developing improved treatments. Here we demonstrated that a key GAS6/AXL axis is highly activated in AML patient cells, particularly in stem/progenitor cells. We developed a potent, selective AXL inhibitor that has favorable pharmaceutical properties and efficacy against preclinical patient-derived xenotransplantation (PDX) models of AML. Importantly, inhibition of AXL sensitized AML stem/progenitor cells to venetoclax treatment, with strong synergistic effects in vitro and in PDX models. Mechanistically, single-cell RNA-sequencing and functional validation studies uncovered that AXL inhibition or in combination with venetoclax potentially targets intrinsic metabolic vulnerabilities of AML stem/progenitor cells, which shows a distinct transcriptomic profile and inhibits mitochondrial oxidative phosphorylation. Inhibition of AXL or BCL-2 also differentially targets key signaling proteins to synergize in leukemic cell killing. These findings have direct translational impact on the treatment of AML and other cancers with high AXL activity.
    DOI:  https://doi.org/10.1182/blood.2020007651
  13. Cancers (Basel). 2021 Mar 16. pii: 1344. [Epub ahead of print]13(6):
      Acute myeloid leukemia (AML) is the most common acute leukemia, characterized by a heterogeneous genetic landscape contributing, among others, to the occurrence of metabolic reprogramming. Autophagy, a key player on metabolism, plays an essential role in AML. Here, we examined the association of three potentially functional genetic polymorphisms in the ATG10 gene, central for the autophagosome formation. We screened a multicenter cohort involving 309 AML patients and 356 healthy subjects for three ATG10 SNPs: rs1864182T>G, rs1864183C>T and rs3734114T>C. The functional consequences of the ATG10 SNPs in its canonical function were investigated in vitro using peripheral blood mononuclear cells from a cohort of 46 healthy individuals. Logistic regression analysis adjusted for age and gender revealed that patients carrying the ATG10rs1864182G allele showed a significantly decreased risk of developing AML (OR [odds ratio] = 0.58, p = 0.001), whereas patients carrying the homozygous ATG10rs3734114C allele had a significantly increased risk of developing AML (OR = 2.70, p = 0.004). Functional analysis showed that individuals carrying the ATG10rs1864182G allele had decreased autophagy when compared to homozygous major allele carriers. Our results uncover the potential of screening for ATG10 genetic variants in AML prevention strategies, in particular for subjects carrying other AML risk factors such as elderly individuals with clonal hematopoiesis of indeterminate potential.
    Keywords:  ATG10; acute myeloid leukemia; autophagy; single nucleotide polymorphism
    DOI:  https://doi.org/10.3390/cancers13061344
  14. Cancers (Basel). 2021 Mar 03. pii: 1083. [Epub ahead of print]13(5):
      Measurable residual disease (MRD) is increasingly employed as a biomarker of quality of complete remission (CR) in intensively treated acute myeloid leukemia (AML) patients. We evaluated if a MRD-driven transplant policy improved outcome as compared to a policy solely relying on a familiar donor availability. High-risk patients (adverse karyotype, FLT3-ITD) received allogeneic hematopoietic cell transplant (alloHCT) whereas for intermediate and low risk ones (CBF-AML and NPM1-mutated), alloHCT or autologous SCT was delivered depending on the post-consolidation measurable residual disease (MRD) status, as assessed by flow cytometry. For comparison, we analyzed a matched historical cohort of patients in whom alloHCT was delivered based on the sole availability of a matched sibling donor. Ten-years overall and disease-free survival were longer in the MRD-driven cohort as compared to the historical cohort (47.7% vs. 28.7%, p = 0.012 and 42.0% vs. 19.5%, p = 0.0003). The favorable impact of this MRD-driven strategy was evident for the intermediate-risk category, particularly for MRD positive patients. In the low-risk category, the significantly lower CIR of the MRD-driven cohort did not translate into a survival advantage. In conclusion, a MRD-driven transplant allocation may play a better role than the one based on the simple donor availability. This approach determines a superior outcome of intermediate-risk patients whereat in low-risk ones a careful evaluation is needed for transplant allocation.
    Keywords:  AML; MRD; biomarkers; cytogenetics and molecular markers; multiparametric flow cytometry
    DOI:  https://doi.org/10.3390/cancers13051083
  15. Cancers (Basel). 2021 Mar 05. pii: 1127. [Epub ahead of print]13(5):
      Protein Kinase CK2 (Casein Kinase 2 or CK2) is a constitutively active serine-threonine kinase overactive in human malignancies. Increased expression and activity of CK2 in Acute Myeloid Leukemia (AML) is associated with a poor outcome. CK2 promotes AML cell survival by impinging on multiple oncogenic signaling pathways. The selective small-molecule CK2 inhibitor CX-4945 has shown in vitro cytotoxicity in AML. Here, we report that CX-4945 has a strong in vivo therapeutic effect in preclinical models of AML. The analysis of genome-wide DNA-binding and gene expression in CX-4945 treated AML cells shows that one mechanism, by which CK2 inhibition exerts a therapeutic effect in AML, involves the revival of IKAROS tumor suppressor function. CK2 phosphorylates IKAROS and disrupts IKAROS' transcriptional activity by impairing DNA-binding and association with chromatin modifiers. Here, we demonstrate that CK2 inhibition decreases IKAROS phosphorylation and restores IKAROS binding to DNA. Further functional experiments show that IKAROS negatively regulates the transcription of anti-apoptotic genes, including BCL-XL (B cell Lymphoma like-2 like 1, BCL2L1). CX-4945 restitutes the IKAROS-mediated repression of BCL-XL in vivo and sensitizes AML cells to apoptosis. Using CX-4945, alongside the cytotoxic chemotherapeutic drug daunorubicin, augments BCL-XL suppression and AML cell apoptosis. Overall, these results establish the in vivo therapeutic efficacy of CX-4945 in AML preclinical models and determine the role of CK2 and IKAROS in regulating apoptosis in AML. Furthermore, our study provides functional and mechanistic bases for the addition of CK2 inhibitors to AML therapy.
    Keywords:  CX-4945; acute myeloid leukemia; anti-apoptotic gene; bcl-xl; daunorubicin; ikaros; patient-derived xenograft; preclinical model; protein kinase CK2; transcriptional regulation
    DOI:  https://doi.org/10.3390/cancers13051127
  16. Blood Adv. 2021 Apr 13. 5(7): 1899-1902
      Myeloid/lymphoid neoplasm with eosinophilia (MLN-Eo) is a World Health Organization (WHO) established category of hematologic malignancies primarily arising in adults. We discuss an 8-month-old infant who presented with clinical features similar to those of juvenile myelomonocytic leukemia (JMML) but who was diagnosed with MLN-Eo driven by an ETV6-FLT3 fusion. Results of patient-derived leukemia ex vivo studies demonstrated increased sensitivity to type I FLT3 inhibitors as compared with type II inhibitors. Treatment with the type I inhibitor gilteritinib resulted in complete immunophenotypic and cytogenetic remission. This patient subsequently underwent a hematopoietic stem cell transplant and remains in complete remission 1 year later. This is the youngest patient reported with an ETV6-FLT3 fusion and adds to the mounting reports of FLT3-rearranged MLN-Eo, supporting its addition to the WHO classification. Furthermore, this case highlights the clinical utility of ex vivo drug testing of targeted therapies.
    DOI:  https://doi.org/10.1182/bloodadvances.2020003699
  17. Exp Hematol. 2021 Mar 29. pii: S0301-472X(21)00128-4. [Epub ahead of print]
      Azacitidine and enasidenib are two therapies available for treatment of AML, and the mechanisms of action of these drugs involves alteration of aberrant DNA methylation. We hypothesized that combination of these agents could have interactive effects on DNA methylation and enhance differentiation in mIDH2 cells. Combination treatment enhanced cellular differentiation in TF-1 cells overexpressing IDJ2R140Q through increased hemoglobinization and increased hemoglobin γ RNA expression compared to the effects of single agents. Furthermore, in primary AML samples (IDH2R140Q or R172K), combination treatment reduced CD34+ cells and increased CD15+ cells to a greater extent compared to single agents..To explore the mechanism of enhanced differentiation with combination treatment, the TF-1 epigenome was analyzed by profiling 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) DNA methylation changes. Enasidenib treatment alone increased 5hmC, consistent with reactivation of Ten-Eleven-Translocase (TET) enzyme activity. Combination treatment reduced 5mC levels at greater numbers of sites and these loci were significantly enriched in regions with increased 5hMC, compared to azacitidine alone (25.8% vs. 7.4%). Results are consistent with a model in which enasidenib-mediated reactivation of TET enzymes cooperates with azacitidine-mediated inhibition of DNA methyltransferase enzymes, leading to greater reductions in DNA methylation and enhanced erythroid differentiation.
    Keywords:  DNA methylation; IDH2; acute myeloid leukemia; azacitidine; enasidenib
    DOI:  https://doi.org/10.1016/j.exphem.2021.03.003
  18. Cell Stem Cell. 2021 Apr 01. pii: S1934-5909(21)00112-0. [Epub ahead of print]28(4): 585-587
      Accumulation of undifferentiated myeloid progenitors is a hallmark of AML, and targeting differentiation blockade represents a promising therapeutic strategy for AML. In this issue of Cell Stem Cell, Wang et al. (2021) conducted surface antigen-guided CRISPR screening and identified ZFP36L2 as a myeloid leukemia differentiation regulator and new therapeutic target.
    DOI:  https://doi.org/10.1016/j.stem.2021.03.006
  19. Leukemia. 2021 Mar 30.
      Chronic myelomonocytic leukemia (CMML) is a stem cell-derived neoplasm characterized by dysplasia, uncontrolled expansion of monocytes, and substantial risk to transform to secondary acute myeloid leukemia (sAML). So far, little is known about CMML-initiating cells. We found that leukemic stem cells (LSC) in CMML reside in a CD34+/CD38- fraction of the malignant clone. Whereas CD34+/CD38- cells engrafted NSGS mice with overt CMML, no CMML was produced by CD34+/CD38+ progenitors or the bulk of CD34- monocytes. CMML LSC invariably expressed CD33, CD117, CD123 and CD133. In a subset of patients, CMML LSC also displayed CD52, IL-1RAP and/or CLL-1. CMML LSC did not express CD25 or CD26. However, in sAML following CMML, the LSC also expressed CD25 and high levels of CD114, CD123 and IL-1RAP. No correlations between LSC phenotypes, CMML-variant, mutation-profiles, or clinical course were identified. Pre-incubation of CMML LSC with gemtuzumab-ozogamicin or venetoclax resulted in decreased growth and impaired engraftment in NSGS mice. Together, CMML LSC are CD34+/CD38- cells that express a distinct profile of surface markers and target-antigens. During progression to sAML, LSC acquire or upregulate certain cytokine receptors, including CD25, CD114 and CD123. Characterization of CMML LSC should facilitate their enrichment and the development of LSC-eradicating therapies.
    DOI:  https://doi.org/10.1038/s41375-021-01227-z
  20. Nat Commun. 2021 03 29. 12(1): 1956
      Nucleophosmin (NPM1) is the most commonly mutated gene in acute myeloid leukemia (AML) resulting in aberrant cytoplasmic translocation of the encoded nucleolar protein (NPM1c+). NPM1c+ maintains a unique leukemic gene expression program, characterized by activation of HOXA/B clusters and MEIS1 oncogene to facilitate leukemogenesis. However, the mechanisms by which NPM1c+ controls such gene expression patterns to promote leukemogenesis remain largely unknown. Here, we show that the activation of HOXBLINC, a HOXB locus-associated long non-coding RNA (lncRNA), is a critical downstream mediator of NPM1c+-associated leukemic transcription program and leukemogenesis. HOXBLINC loss attenuates NPM1c+-driven leukemogenesis by rectifying the signature of NPM1c+ leukemic transcription programs. Furthermore, overexpression of HoxBlinc (HoxBlincTg) in mice enhances HSC self-renewal and expands myelopoiesis, leading to the development of AML-like disease, reminiscent of the phenotypes seen in the Npm1 mutant knock-in (Npm1c/+) mice. HoxBlincTg and Npm1c/+ HSPCs share significantly overlapped transcriptome and chromatin structure. Mechanistically, HoxBlinc binds to the promoter regions of NPM1c+ signature genes to control their activation in HoxBlincTg HSPCs, via MLL1 recruitment and promoter H3K4me3 modification. Our study reveals that HOXBLINC lncRNA activation plays an essential oncogenic role in NPM1c+ leukemia. HOXBLINC and its partner MLL1 are potential therapeutic targets for NPM1c+ AML.
    DOI:  https://doi.org/10.1038/s41467-021-22095-2
  21. Blood. 2021 Mar 30. pii: blood.2020005831. [Epub ahead of print]
      Chronic natural killer large granular lymphocyte (NK-LGL) leukemia, also referred to as chronic lymphoproliferative disorder of NK cells (CLPD-NK), is a rare disorder defined by prolonged expansion of clonal NK cells. Similar prevalence of STAT3 mutations in chronic T- and NK-LGL leukemia is suggestive of common pathogenesis. We undertook whole genome sequencing to identify mutations unique to NK-LGL leukemia. We analyzed the results to develop a resequencing panel and applied it to 58 patients. PI3K pathway gene mutations (PIK3CD/PIK3AP1) and TNFAIP3 mutations were seen in 5% and 10% of patients, respectively. TET2 was exceptional in that mutations were present in 16/58 (28%) of patient samples, with evidence that TET2 mutations can be dominant and exclusive to the NK compartment. Reduced-representation bisulfite sequencing (RRBS) demonstrated that methylation patterns were significantly altered in TET2-mutant samples. The promoter of TET2 and that of PTPRD, a negative regulator of STAT3, were found to be methylated in additional cohort samples, largely confined to the TET2 mutant group. Mutations in STAT3 were observed in 19/58 (33%) of patient samples, seven of which had concurrent TET2 mutations. Thrombocytopenia and resistance to immunosuppressives were uniquely observed in those patients with only TET2 mutation (Games-Howell p=0.0074, Fisher's exact p=0.00466, respectively). Patients with STAT3 mutation, inclusive of those with TET2 co-mutation, had lower hematocrit (HCT), hemoglobin (HGB), and absolute neutrophil count (ANC) compared to STAT3 wild-type patients (Welch's t-test, p<=0.015). We present the discovery of TET2 mutations in chronic NK-LGL leukemia and evidence that it identifies a unique molecular subtype.
    DOI:  https://doi.org/10.1182/blood.2020005831
  22. Blood Adv. 2021 Apr 13. 5(7): 1862-1875
      Mature natural killer (NK) cell neoplasms are rare but very aggressive types of cancers. With currently available treatments, they have a very poor prognosis and, as such, are an example of group of cancers in which the development of effective precision therapies is needed. Using both short- and long-term drug sensitivity testing, we explored novel ways to target NK-cell neoplasms by combining the clinically approved JAK inhibitor ruxolitinib with other targeted agents. We profiled 7 malignant NK-cell lines in drug sensitivity screens and identified that these exhibit differential drug sensitivities based on their genetic background. In short-term assays, various classes of drugs combined with ruxolitinib seemed highly potent. Strikingly, resistance to most of these combinations emerged rapidly when explored in long-term assays. However, 4 combinations were identified that selectively eradicated the cancer cells and did not allow for development of resistance: ruxolitinib combined with the mouse double-minute 2 homolog (MDM2) inhibitor idasanutlin in STAT3-mutant, TP53 wild-type cell lines; ruxolitinib combined with the farnesyltransferase inhibitor tipifarnib in TP53-mutant cell lines; and ruxolitinib combined with either the glucocorticoid dexamethasone or the myeloid cell leukemia-1 (MCL-1) inhibitor S63845 but both without a clear link to underlying genetic features. In conclusion, using a new drug sensitivity screening approach, we identified drug combinations that selectively target mature NK-cell neoplasms and do not allow for development of resistance, some of which can be applied in a genetically stratified manner.
    DOI:  https://doi.org/10.1182/bloodadvances.2020003300
  23. Leukemia. 2021 Apr 02.
      Glycogen synthase kinase 3 (GSK-3) consists of two isoforms (α and β) that were originally linked to glucose metabolism regulation. However, GSK-3 is also involved in several signaling pathways controlling many different key functions in healthy cells. GSK-3 is a unique kinase in that its isoforms are constitutively active, while they are inactivated mainly through phosphorylation at Ser residues by a variety of upstream kinases. In the early 1990s, GSK-3 emerged as a key player in cancer cell pathophysiology. Since active GSK-3 promotes destruction of multiple oncogenic proteins (e.g., β-catenin, c-Myc, Mcl-1) it was considered to be a tumor suppressor. Accordingly, GSK-3 is frequently inactivated in human cancer via aberrant regulation of upstream signaling pathways. More recently, however, it has emerged that GSK-3 isoforms display also oncogenic properties, as they up-regulate pathways critical for neoplastic cell proliferation, survival, and drug-resistance. The regulatory roles of GSK-3 isoforms in cell cycle, apoptosis, DNA repair, tumor metabolism, invasion, and metastasis reflect the therapeutic relevance of these kinases and provide the rationale for combining GSK-3 inhibitors with other targeted drugs. Here, we discuss the multiple and often conflicting roles of GSK-3 isoforms in acute leukemias. We also review the current status of GSK-3 inhibitor development for innovative leukemia therapy.
    DOI:  https://doi.org/10.1038/s41375-021-01243-z
  24. Blood Rev. 2021 Mar 16. pii: S0268-960X(21)00031-X. [Epub ahead of print] 100825
      Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by a reciprocal translocation [t(9;22)(q34;q11.2)] that leads to the fusion of ABL1 gene sequences (9q34) downstream of BCR gene sequences (22q11) and is cytogenetically visible as Philadelphia chromosome (Ph). The resulting BCR/ABL1 chimeric protein is a constitutively active tyrosine kinase that activates multiple signaling pathways, which collectively lead to malignant transformation. During the early (chronic) phase of CML (CP-CML), the myeloid cell compartment is expanded, but differentiation is maintained. Without effective therapy, CP-CML invariably progresses to blast phase (BP-CML), an acute leukemia of myeloid or lymphoid phenotype. The development of BCR-AB1 tyrosine kinase inhibitors (TKIs) revolutionized the treatment of CML and ignited the start of a new era in oncology. With three generations of BCR/ABL1 TKIs approved today, the majority of CML patients enjoy long term remissions and near normal life expectancy. However, only a minority of patients maintain remission after TKI discontinuation, a status termed treatment free remission (TFR). Unfortunately, 5-10% of patients fail TKIs due to resistance and are at risk of progression to BP-CML, which is curable only with hematopoietic stem cell transplantation. Overcoming TKI resistance, improving the prognosis of BP-CML and improving the rates of TFR are areas of active research in CML.
    Keywords:  BCR/ABL1; Chronic myeloid leukemia; Philadelphia chromosome; Treatment free remission; Tyrosine kinase inhibitor
    DOI:  https://doi.org/10.1016/j.blre.2021.100825
  25. Cancer Discov. 2021 Apr;11(4): 900-915
      Artificial intelligence (AI) is rapidly reshaping cancer research and personalized clinical care. Availability of high-dimensionality datasets coupled with advances in high-performance computing, as well as innovative deep learning architectures, has led to an explosion of AI use in various aspects of oncology research. These applications range from detection and classification of cancer, to molecular characterization of tumors and their microenvironment, to drug discovery and repurposing, to predicting treatment outcomes for patients. As these advances start penetrating the clinic, we foresee a shifting paradigm in cancer care becoming strongly driven by AI. SIGNIFICANCE: AI has the potential to dramatically affect nearly all aspects of oncology-from enhancing diagnosis to personalizing treatment and discovering novel anticancer drugs. Here, we review the recent enormous progress in the application of AI to oncology, highlight limitations and pitfalls, and chart a path for adoption of AI in the cancer clinic.
    DOI:  https://doi.org/10.1158/2159-8290.CD-21-0090