bims-traimu Biomed News
on Trained immunity
Issue of 2023–12–31
two papers selected by
Yantong Wan, Southern Medical University



  1. Int Immunopharmacol. 2023 Dec 25. pii: S1567-5769(23)01772-1. [Epub ahead of print]127 111445
      Increasing evidence indicates that innate immune cells also possess immunological memory. Microglia are brain-resident innate immune cells and execute inflammatory and phagocytic functions upon environmental stimulation, during which processes triggering receptor expressed on myeloid cells 2 (TREM2) plays an important regulatory role. However, although microglia are known to exhibit innate immune memory related to inflammation when subjected to continuous inflammatory stimuli, whether microglia exhibit innate immune memory related to phagocytosis and whether TREM2 participates in innate immune memory of microglia remain unknown. Herein, we treated WT and Trem2 KO mice with peripheral injection of lipopolysaccharides (LPS) to induce microglial activation or microglial immune tolerance. We found that Tnfα and Il-1β expression levels in the hippocampi were significantly elevated after 1xLPS and then dramatically decreased after 4xLPS in both WT and Trem2 KO mice; and their level changes were indistinguishable between WT and Trem2 KO mice. Moreover, 1xLPS significantly promoted microglial phagocytosis of synapses and caused microglial morphology changes resembling activated status in both WT and Trem2 KO mice. However, 4xLPS significantly reduced synapse phagocytosis and largely reversed morphology changes in WT microglia. While 4xLPS had no effect on reducing synapse phagocytosis in Trem2 KO microglia. RNA-seq analysis revealed that TREM2 deficiency reprogrammed complement and phagosome-related transcriptional landscape during immune tolerance. Our results demonstrate that microglia also exhibit immune tolerance related to phagocytosis of synapses and that TREM2 plays a crucial role in this process possibly through regulating complement system and phagosome-related gene expressions.
    Keywords:  Complement system; Innate immune tolerance; Microglia; Phagocytosis of synapses; TREM2
    DOI:  https://doi.org/10.1016/j.intimp.2023.111445
  2. Hum Vaccin Immunother. 2024 Dec 31. 20(1): 2297453
      Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
    Keywords:  Toll-like receptors; cancer vaccines; vaccine adjuvants
    DOI:  https://doi.org/10.1080/21645515.2023.2297453