J Med Virol. 2023 Nov;95(11): e29217
As a key immune cell in the brain, microglia are essential for protecting the central nervous system (CNS) from viral infections, including HIV. Microglia possess functional Toll-like receptor 3 (TLR3), a key viral sensor for activating interferon (IFN) signaling pathway-mediated antiviral immunity. We, therefore, studied the effect of poly (I:C), a synthetic ligand of TLR3, on the activation of the intracellular innate immunity against HIV in human iPSC-derived microglia (iMg). We found that poly (I:C) treatment of iMg effectively inhibits HIV infection/replication at both mRNA and protein levels. Investigations of the mechanisms revealed that TLR3 activation of iMg by poly (I:C) induced the expression of both type I and type III IFNs. Compared with untreated cells, the poly (I:C)-treated iMg expressed significantly higher levels of IFN-stimulated genes (ISGs) with known anti-HIV activities (ISG15, MxB, Viperin, MxA, and OAS-1). In addition, TLR3 activation elicited the expression of the HIV entry coreceptor CCR5 ligands (CC chemokines) in iMg. Furthermore, the transcriptional profile analysis showed that poly (I:C)-treated cells had the upregulated IFN signaling genes (ISG15, ISG20, IFITM1, IFITM2, IFITM3, IFITM10, APOBEC3A, OAS-2, MxA, and MxB) and the increased CC chemokine signaling genes (CCL1, CCL2, CCL3, CCL4, and CCL15). These observations indicate that TLR3 is a potential therapy target for activating the intracellular innate immunity against HIV infection/replication in human microglial cells. Therefore, further studies with animal models and clinical specimens are necessary to determine the role of TLR3 activation-driven antiviral response in the control and elimination of HIV in infected host cells.
Keywords: HIV; TLR3; iPSC-derived microglia; interferon; poly (I:C)