bims-traimu Biomed News
on Trained immunity
Issue of 2023–02–12
twelve papers selected by
Yantong Wan, Southern Medical University



  1. Front Med (Lausanne). 2022 ;9 1085339
      Autoimmune disorders have been well characterized over the years and many pathways-but not all of them-have been found to explain their pathophysiology. Autoinflammatory disorders, on the other hand, are still hiding most of their molecular and cellular mechanisms. During the past few years, a newcomer has challenged the idea that only adaptive immunity could display memory response. Trained immunity is defined by innate immune responses that are faster and stronger to a second stimulus than to the first one, being the same or not. In response to the trained immunity inducer, and through metabolic and epigenetic changes of hematopoietic stem and progenitor cells in the bone marrow that are transmitted to their cellular progeny (peripheral trained immunity), or directly of tissue-resident cells (local innate immunity), innate cells responsiveness and functions upon stimulation are improved in the long-term. Innate immunity can be beneficial, but it could also be detrimental when maladaptive. Here, we discuss how trained immunity could contribute to the physiopathology of autoimmune and autoinflammatory diseases.
    Keywords:  autoimmune disease; autoinflammatory diseases; innate immunity; pathophysiology; trained immunity
    DOI:  https://doi.org/10.3389/fmed.2022.1085339
  2. Exp Hematol. 2023 Feb 08. pii: S0301-472X(23)00028-0. [Epub ahead of print]
      Immunological memory is a feature typically ascribed to the adaptive arm of the immune system. However, recent studies have demonstrated that hematopoietic stem cells (HSCs) and innate immune cells such as monocytes and macrophages are also capable of gaining epigenetic signatures to enhance their response in the context of reinfection. This suggests the presence of long-term memory, a phenomenon referred to as trained immunity. Trained immunity in HSCs can occur via changes in the epigenetic landscape and enhanced chromatin accessibility in lineage-specific genes, as well as through metabolic alterations. These changes can lead to a skewing in lineage bias, particularly enhanced myelopoiesis and the generation of epigenetically modified innate immune cells that provide better protection against pathogens upon secondary infection. Here, we summarize recent advances in trained immunity and epigenetic memory formation in HSCs and self-renewing alveolar macrophages (AMs), which was the focus of the Spring 2022 International Society for Experimental Hematology (ISEH) webinar.
    DOI:  https://doi.org/10.1016/j.exphem.2023.02.001
  3. J Transl Med. 2023 Feb 10. 21(1): 106
      The Bacillus Calmette-Guérin (BCG) vaccine was discovered a century ago and has since been clinically applicable. BCG can not only be used for the prevention of tuberculosis, but also has a non-specific protective effect on the human body called trained immunity that is mediated by innate immune cells such as monocytes, macrophages, and natural killer cells. Mechanisms of trained immunity include epigenetic reprogramming, metabolic reprogramming, and long-term protection mediated by hematopoietic stem cells. Trained immunity has so far shown beneficial effects on cancer, viral-infections, autoimmune diseases, and a variety of other diseases, especially bladder cancer, respiratory viruses, and type 1 diabetes. The modulation of the immune response by BCG has led to the development of a variety of recombinant vaccines. Although the specific mechanism of BCG prevention on diseases has not been fully clarified, the potential role of BCG deserves further exploration, which is of great significance for prevention and treatment of diseases.
    Keywords:  BCG; Cancer; Epigenetic reprogramming; Metabolic reprogramming; Trained immunity; Viral infection
    DOI:  https://doi.org/10.1186/s12967-023-03944-8
  4. Int J Mol Sci. 2023 Jan 24. pii: 2311. [Epub ahead of print]24(3):
      Trained immunity is the process of long-term functional reprogramming (a de facto innate immune memory) of innate immune cells such as monocytes and macrophages after an exposure to pathogens, vaccines, or their ligands. The induction of trained immunity is mediated through epigenetic and metabolic mechanisms. Apart from exogenous stimuli, trained immunity can be induced by endogenous compounds such as oxidized LDL, urate, fumarate, but also cytokines including IL-1α and IL-1β. Here, we show that also recombinant IL-36γ, a pro-inflammatory cytokine of the IL-1-family, is able to induce trained immunity in primary human monocytes, demonstrated by higher cytokine responses and an increase in cellular metabolic pathways both regulated by epigenetic histone modifications. These effects could be inhibited by the IL-36 receptor antagonist as well as by IL-38, an anti-inflammatory cytokine of the IL-1 family which shares its main receptor with IL-36 (IL-1R6). Further, we demonstrated that trained immunity induced by IL-36γ is mediated by NF-κB and mTOR signaling. The inhibitory effect of IL-38 on IL-36γ-induced trained immunity was confirmed in experiments using bone marrow of IL-38KO and WT mice. These results indicate that exposure to IL-36γ results in long-term pro-inflammatory changes in monocytes which can be inhibited by IL-38. Recombinant IL-38 could therefore potentially be used as a therapeutic intervention for diseases characterized by exacerbated trained immunity.
    Keywords:  IL-36; IL-38; epigenetics; immunometabolism; innate immune memory
    DOI:  https://doi.org/10.3390/ijms24032311
  5. Curr Med Chem. 2023 Feb 07.
      Although the burden of malaria has been successfully controlled globally, this disease remains a major public health issue. To date, neither existing drugs nor vaccines against malaria are sufficient in eliminating malaria worldwide. To achieve the eradication of malaria by 2040, effective interventions targeting all Plasmodium species are urgently needed. As the cornerstone of vaccine design, immune memory serves a significant role in the host's defense against Plasmodium infections. It has long been considered that innate immunity is non-specific and lacks immunologic memory. However, emerging evidence has suggested that innate immunity can be trained following exposure of the body to infectious agents, such as Plasmodium or its products, which, in turn, promotes the onset of a type of memory in innate immune cells. The above ''trained'' innate immune cells, whose phenotype is modified in response to epigenetic modifications, metabolic recombination, or cytokine secretion, exhibit differential pathophysiology after the exposure of the body to a pathogen. In addition, Plasmodium-infected red blood cells and other host cells can secrete exosomes that contain conserved parasite-specific information, such as proteins, RNA, non-coding RNA molecules, and nucleic acids. These molecules can act as stimuli for promoting the establishment of ''trained'' innate immunity against malaria, thereby altering the onset and progression of the parasitic disease. A deeper understanding of the role of exosomes in the development of ''trained'' innate immunity during Plasmodium infection could provide novel therapeutic and prevention strategies against malaria infections.
    Keywords:  ''Trained'' innate immunity; Extracellular vesicle; Plasmodium; Stimuli; vaccine
    DOI:  https://doi.org/10.2174/0929867330666230207115157
  6. J Clin Med. 2023 Feb 01. pii: 1154. [Epub ahead of print]12(3):
      Beneficial off-target effects of the Bacillus Calmette-Guérin (BCG) vaccination might offer general protection from respiratory tract infections. We conducted a systematic review and meta-analysis of published randomized controlled trials (RCTs) to ascertain BCG vaccination effectiveness against COVID-19. We looked up English RCTs from 1 January 2019 to 15 November 2022 in Embase, the Cochrane Library, and the Web of Science in this systematic review and meta-analysis. Nine RCTs, including 7963 participants, were included. The infection rate of COVID-19 was not decreased in people who were vaccinated with BCG (OR, 0.96; 95% CI, 0.82-1.13; I2 = 4%), and the BCG vaccination group did not have decreased COVID-19 related-hospitalization (OR, 0.66; 95% CI, 0.37-1.18; I2 = 42%), admission to the ICU (OR, 0.25; 95% CI, 0.05-1.18; I2 = 0%), and mortality (OR, 0.64; 95% CI, 0.17-2.44; I2 = 0%) compared with the control group. There is not sufficient evidence to support the use of BCG vaccination in the prevention of COVID-19 infection and severe COVID-19 and avoid overstating the role of BCG vaccination leading to its misuse.
    Keywords:  BCG; COVID-19; SARS-CoV-2; trained immunity; vaccine
    DOI:  https://doi.org/10.3390/jcm12031154
  7. mBio. 2023 Feb 07. e0361122
      Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide. To date, the mainstay of vaccination involves the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG), a live-attenuated vaccine that confers protection against extrapulmonary disease in infants and children but not against lung disease. Thus, there is an urgent need for novel vaccines. Here, we show that a multicomponent acellular vaccine (TB-MAPS) induces robust antibody responses and long-lived systemic and tissue-resident memory Th1, Th17, and cytotoxic CD4+ and CD8+ T cells, and promotes trained innate immunity mediated by γδT and NKT cells in mice. When tested in a mouse aerosol infection model, TB-MAPS significantly reduced bacterial loads in the lungs and spleens to the same extent as BCG. When used in conjunction with BCG, TB-MAPS further enhanced BCG-mediated protection, especially in the lungs, further supporting this construct as a promising TB vaccine candidate. IMPORTANCE Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide. Here, we evaluate a novel vaccine which induces a broad immune response to Mycobacterium tuberculosis including robust antibody responses and long-lived systemic and tissue-resident memory Th1, Th17, and cytotoxic CD4+ and CD8+ T cells. When tested in a mouse aerosol infection model, this vaccine significantly reduced bacterial loads in the lungs and spleens to the same extent as BCG. When used in conjunction with BCG, TB-MAPS further enhanced BCG-mediated protection, especially in the lungs, further supporting this construct as a promising TB vaccine candidate.
    Keywords:  B cell; Mycobacterium tuberculosis; T cell; tuberculosis; vaccine
    DOI:  https://doi.org/10.1128/mbio.03611-22
  8. Acta Biomater. 2023 Feb 06. pii: S1742-7061(23)00069-7. [Epub ahead of print]
      Since the recent observation that immune cells undergo metabolic reprogramming upon activation, there has been immense research in this area to not only understand the basis of such changes, but also to exploit metabolic rewiring for therapeutic benefit. In a resting state, macrophages preferentially utilise oxidative phosphorylation to generate energy; however, in the presence of immune cell activators, glycolytic genes are upregulated, and energy is generated through glycolysis. This facilitates the rapid production of biosynthetic intermediates and a pro-inflammatory macrophage phenotype. While this is essential to mount responses to infectious agents, more evidence is accumulating linking dysregulated metabolism to inappropriate immune responses. Given that certain biomaterials are known to promote an inflammatory macrophage phenotype, this prompted us to investigate if biomaterial particulates can impact on macrophage metabolism. Using micron and nano sized hydroxyapatite (HA), we demonstrate for the first time that these biomaterials can indeed drive changes in metabolism, and that this occurs in a size-dependent manner. We show that micronHA, but not nanoHA, particles upregulate surrogate markets of glycolysis including the glucose transporter (GLUT1), hexokinase 2 (HK2), GAPDH, and PKM2. Furthermore, we demonstrate that micronHA alters mitochondrial morphology and promotes a bioenergetic shift to favour glycolysis. Finally, we demonstrate that glycolytic gene expression is dependent on particle uptake and that targeting glycolysis attenuates the pro-inflammatory profile of micronHA-treated macrophages. These results not only further our understanding of biomaterial-based macrophage activation, but also implicate immunometabolism as a new area for consideration in intelligent biomaterial design and therapeutic targeting. STATEMENT OF SIGNIFICANCE: Several recent studies have reported that immune cell activation occurs concurrently with metabolic reprogramming. Furthermore, metabolic reprogramming of innate immune cells plays a prominent role in determining cellular phenotype and function. In this study we demonstrate that hydroxyapatite particle size alters macrophage metabolism, in turn driving their functional phenotype. Specifically, the pro-inflammatory phenotype promoted by micron-sized HA-particles is accompanied by changes in mitochondrial dynamics and a bioenergetic shift favouring glycolysis. This effect is not seen with nano-HA particles and can be attenuated upon inhibition of glycolysis. This study therefore not only identifies immunometabolism as a useful tool for characterising the immune response to biomaterials, but also highlights immunometabolism as a targetable aspect of the host response for therapeutic benefit.
    Keywords:  Immunometabolism; hydroxyapatite; immunomodulation; macrophages; particle size
    DOI:  https://doi.org/10.1016/j.actbio.2023.01.058
  9. J Vis Exp. 2023 Jan 20.
      Innate immunity provides the critical first line of defense in response to pathogens and sterile insults. A key mechanistic component of this response is the initiation of innate immune programmed cell death (PCD) to eliminate infected or damaged cells and propagate immune responses. However, excess PCD is associated with inflammation and pathology. Therefore, understanding the activation and regulation of PCD is a central aspect of characterizing innate immune responses and identifying new therapeutic targets across the disease spectrum. This protocol provides methods for characterizing innate immune PCD activation by monitoring caspases, a family of cysteine-dependent proteases that are often associated with diverse PCD pathways, including apoptosis, pyroptosis, necroptosis, and PANoptosis. Initial reports characterized caspase-2, caspase-8, caspase-9, and caspase-10 as initiator caspases and caspase-3, caspase-6, and caspase-7 as effector caspases in apoptosis, while later studies found the inflammatory caspases, caspase-1, caspase-4, caspase-5, and caspase-11, drive pyroptosis. It is now known that there is extensive crosstalk between the caspases and other innate immune and cell death molecules across the previously defined PCD pathways, identifying a key knowledge gap in the mechanistic understanding of innate immunity and PCD and leading to the characterization of PANoptosis. PANoptosis is a unique innate immune inflammatory PCD pathway regulated by PANoptosome complexes, which integrate components, including caspases, from other cell death pathways. Here, methods for assessing the activation of caspases in response to various stimuli are provided. These methods allow for the characterization of PCD pathways both in vitro and in vivo, as activated caspases undergo proteolytic cleavage that can be visualized by western blotting using optimal antibodies and blotting conditions. A protocol and western blotting workflow have been established that allow for the assessment of the activation of multiple caspases from the same cellular population, providing a comprehensive characterization of the PCD processes. This method can be applied across research areas in development, homeostasis, infection, inflammation, and cancer to evaluate PCD pathways throughout cellular processes in health and disease.
    DOI:  https://doi.org/10.3791/64308
  10. J Neurosci. 2023 Feb 07. pii: JN-RM-1348-22. [Epub ahead of print]
      Ethanol tolerance is the first type of behavioral plasticity and neural plasticity that is induced by ethanol intake, and yet its molecular and circuit bases remain largely unexplored. Here, we characterize three distinct forms of ethanol tolerance in male Drosophila: rapid, chronic, and repeated. Rapid tolerance is composed of two short-lived memory-like states, one that is labile and one that is consolidated. Chronic tolerance, induced by continuous exposure, lasts for two days, induces ethanol preference, and hinders the development of rapid tolerance through the activity of histone deacetylases (HDACs). Unlike rapid tolerance, chronic tolerance is independent of the immediate early gene Hr38/Nr4a Chronic tolerance is suppressed by the Sirtuin HDAC Sirt1, whereas rapid tolerance is enhanced by Sirt1 Moreover, rapid and chronic tolerance map to anatomically distinct regions of the mushroom body learning and memory centers. Chronic tolerance, like long term memory, is dependent on new protein synthesis and it induces the kayak/c-fos immediate early gene, but it depends on CREB signaling outside the mushroom bodies, and it does not require the Radish GTPase. Thus, chronic ethanol exposure creates an ethanol-specific memory-like state that is molecularly and anatomically different from other forms of ethanol tolerance.Significance Statement:The pattern and concentration of initial ethanol exposure causes operationally distinct types of ethanol tolerance to form. We identify separate molecular and neural circuit mechanisms for two forms of ethanol tolerance, rapid and chronic. We also discover that chronic tolerance forms an ethanol-specific long term memory-like state that localizes to learning and memory circuits, but it is different from appetitive and aversive long-term memories. By contrast, rapid tolerance is composed of labile and consolidated short-term memory-like states. The multiple forms of ethanol memory-like states are genetically tractable for understanding how initial forms of ethanol-induced neural plasticity form a substrate for the longer-term brain changes associated with alcohol use disorder.
    DOI:  https://doi.org/10.1523/JNEUROSCI.1348-22.2023
  11. Mol Cells. 2023 Feb 09.
      Pyruvate metabolism, a key pathway in glycolysis and oxidative phosphorylation, is crucial for energy homeostasis and mitochondrial quality control (MQC), including fusion/fission dynamics and mitophagy. Alterations in pyruvate flux and MQC are associated with reactive oxygen species accumulation and Ca2+ flux into the mitochondria, which can induce mitochondrial ultrastructural changes, mitochondrial dysfunction and metabolic dysregulation. Perturbations in MQC are emerging as a central mechanism for the pathogenesis of various metabolic diseases, such as neurodegenerative diseases, diabetes and insulin resistance-related diseases. Mitochondrial Ca2+ regulates the pyruvate dehydrogenase complex (PDC), which is central to pyruvate metabolism, by promoting its dephosphorylation. Increase of pyruvate dehydrogenase kinase (PDK) is associated with perturbation of mitochondria-associated membranes (MAMs) function and Ca2+ flux. Pyruvate metabolism also plays an important role in immune cell activation and function, dysregulation of which also leads to insulin resistance and inflammatory disease. Pyruvate metabolism affects macrophage polarization, mitochondrial dynamics and MAM formation, which are critical in determining macrophage function and immune response. MAMs and MQCs have also been intensively studied in macrophage and T cell immunity. Metabolic reprogramming connected with pyruvate metabolism, mitochondrial dynamics and MAM formation are important to macrophages polarization (M1/M2) and function. T cell differentiation is also directly linked to pyruvate metabolism, with inhibition of pyruvate oxidation by PDKs promoting proinflammatory T cell polarization. This article provides a brief review on the emerging role of pyruvate metabolism in MQC and MAM function, and how dysfunction in these processes leads to metabolic and inflammatory diseases.
    Keywords:  T cell; macrophage; mitochondria quality control; mitochondria-associated membranes; pyruvate dehydrogenase complex; pyruvate dehydrogenase kinase
    DOI:  https://doi.org/10.14348/molcells.2023.2128