bims-traimu Biomed News
on Trained immunity
Issue of 2022–12–25
seven papers selected by
Yantong Wan, Southern Medical University



  1. Cells. 2022 Dec 15. pii: 4072. [Epub ahead of print]11(24):
      Atherosclerosis is a complex metabolic disease characterized by the dysfunction of lipid metabolism and chronic inflammation in the intimal space of the vessel. As the most abundant innate immune cells, monocyte-derived macrophages play a pivotal role in the inflammatory response, cholesterol metabolism, and foam cell formation. In recent decades, it has been demonstrated that monocytes and macrophages can establish innate immune memory (also termed trained immunity) via endogenous and exogenous atherogenic stimuli and exhibit a long-lasting proinflammatory phenotype. The important cellular metabolism processes, including glycolysis, oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, fatty acid synthesis, and cholesterol synthesis, are reprogrammed. Trained monocytes/macrophages with innate immune memory can be persistently hyperactivated and can undergo extensive epigenetic rewiring, which contributes to the pathophysiological development of atherosclerosis via increased proinflammatory cytokine production and lipid accumulation. Here, we provide an overview of the regulation of cellular metabolic processes and epigenetic modifications of innate immune memory in monocytes/macrophages as well as the potential endogenous and exogenous stimulations involved in the progression of atherosclerosis that have been reported recently. These elucidations might be beneficial for further understanding innate immune memory and the development of therapeutic strategies for inflammatory diseases and atherosclerosis.
    Keywords:  atherosclerosis; epigenetic rewiring; innate immune memory; macrophage; metabolic reprogramming
    DOI:  https://doi.org/10.3390/cells11244072
  2. Vaccines (Basel). 2022 Dec 12. pii: 2127. [Epub ahead of print]10(12):
      Metabolomics is emerging as a promising tool to understand the effect of immunometabolism for the development of novel host-directed alternative therapies. Immunometabolism can modulate both innate and adaptive immunity in response to pathogens and vaccinations. For instance, infections can affect lipid and amino acid metabolism while vaccines can trigger bile acid and carbohydrate pathways. Metabolomics as a vaccinomics tool, can provide a broader picture of vaccine-induced biochemical changes and pave a path to potentiate the vaccine efficacy. Its integration with other systems biology tools or treatment modes can enhance the cure, response rate, and control over the emergence of drug-resistant strains. Mycobacterium tuberculosis (Mtb) infection can remodel the host metabolism for its survival, while there are many biochemical pathways that the host adjusts to combat the infection. Similarly, the anti-TB vaccine, Bacillus Calmette-Guerin (BCG), was also found to affect the host metabolic pathways thus modulating immune responses. In this review, we highlight the metabolomic schema of the anti-TB vaccine and its therapeutic applications. Rewiring of immune metabolism upon BCG vaccination induces different signaling pathways which lead to epigenetic modifications underlying trained immunity. Metabolic pathways such as glycolysis, central carbon metabolism, and cholesterol synthesis play an important role in these aspects of immunity. Trained immunity and its applications are increasing day by day and it can be used to develop the next generation of vaccines to treat various other infections and orphan diseases. Our goal is to provide fresh insight into this direction and connect various dots to develop a conceptual framework.
    Keywords:  Bacillus Calmette-Guerin; Mycobacterium tuberculosis; epigenetics and immunity; immunometabolism; metabolomics; trained immunity; tuberculosis; vaccine metabolism; vaccinomics
    DOI:  https://doi.org/10.3390/vaccines10122127
  3. J Fungi (Basel). 2022 Nov 30. pii: 1268. [Epub ahead of print]8(12):
      Bronchial epithelial cells (BEC) play a crucial role in innate immunity against inhaled fungi. Indeed, in response to microorganisms, BEC synthesize proinflammatory cytokines involved in the recruitment of neutrophils. We have recently shown that BEC exert antifungal activity against Aspergillus fumigatus by inhibiting filament growth. In the present study, we first analyzed the inflammatory and antifungal responses of BEC infected by several fungal species such as Aspergillus spp., Scedosporium apiospermum and Candida albicans, which are frequently isolated from the sputum of people with chronic pulmonary diseases. The airways of these patients, such as people with cystic fibrosis (pwCF), are mainly colonized by P. aeruginosa and secondary by fungal pathogens. We have previously demonstrated that BEC are capable of innate immune memory, allowing them to increase their inflammatory response against A. fumigatus following a previous contact with Pseudomonas aeruginosa flagellin. To identify the impact of bacteria exposure on BEC responses to other fungal infections, we extended the analysis of BEC innate immune memory to Aspergillus spp., Scedosporium apiospermum and Candida albicans infection. Our results show that BEC are able to recognize and respond to Aspergillus spp., S. apiospermum and C. albicans infection and that the modulation of BEC responses by pre-exposure to flagellin varies according to the fungal species encountered. Deepening our knowledge of the innate immune memory of BEC should open new therapeutic avenues to modulate the inflammatory response against polymicrobial infections observed in chronic pulmonary diseases such as CF.
    Keywords:  bronchial epithelial cells; chronic pulmonary diseases; fungal infection; innate immune memory
    DOI:  https://doi.org/10.3390/jof8121268
  4. Cell Mol Life Sci. 2022 Dec 21. 80(1): 14
      Cancer development is a long-lasting process during which macrophages play a pivotal role. However, how macrophages maintain their cellular identity, persistence, expanding and pro-tumor property during malignant progression remains elusive. Inspired by the recent report of the activation of stem cell-like self-renewal mechanism in mature macrophages, we postulate that intra-tumoral macrophages might be trained to assume stem-like properties and memory-like activity favoring cancer development. Herein we demonstrated that tumor infiltrating macrophages rapidly converted into the CD11b+F4/80+Ly6C-Bcl6+ phenotype, and adopted stem cell-like properties involving expression of stemness-related genes, long-term persistence and self-renewing. Importantly, Bcl6+ macrophages stably maintained cell identity, gene signature, metabolic profile, and pro-tumor property even after long-term culture in tumor-free medium, which were hence termed stem cell-like memory macrophages (SMMs). Mechanistically, we showed that transcriptional factor Bcl6 co-opted the demethylase Tet2 and the deacetylase SIRT1 to confer the epigenetic imprinting and mitochondrial metabolic traits to SMMs, bolstering the stability and longevity of trained immunity in tumor-associated macrophages (TAMs). Furthermore, tumor-derived redHMGB1 was identified as the priming signal, which, through TLR4 and mTOR/AKT pathway, induced Bcl6-driven program underpinning SMMs generation. Collectively, our study uncovers a distinct macrophage population with a hybrid of stem cell and memory cell properties, and unveils a regulatory mechanism that integrates transcriptional, epigenetic and metabolic pathways to promote long-lasting pro-tumor immunity.
    Keywords:  Bcl6; Memory-like macrophages; Stem cell-like macrophages; Trained immunity
    DOI:  https://doi.org/10.1007/s00018-022-04660-0
  5. Biochem J. 2022 Dec 22. 479(24): 2499-2510
      Immune cells are metabolically plastic and respond to inflammatory stimuli with large shifts in metabolism. Itaconate is one of the most up-regulated metabolites in macrophages in response to the gram negative bacterial product LPS. As such, itaconate has recently been the subject of intense research interest. The artificial derivatives, including 4-Octyl Itaconate (4-OI) and Dimethyl Itaconate (DI) and naturally produced isomers, mesaconate and citraconate, have been tested in relation to itaconate biology with similarities and differences in the biochemistry and immunomodulatory properties of this family of compounds emerging. Both itaconate and 4-OI have been shown to modify cysteines on a range of target proteins, with the modification being linked to a functional change. Targets include KEAP1 (the NRF2 inhibitor), GAPDH, NLRP3, JAK1, and the lysosomal regulator, TFEB. 4-OI and DI are more electrophilic, and are therefore stronger NRF2 activators, and inhibit the production of Type I IFNs, while itaconate inhibits SDH and the dioxygenase, TET2. Additionally, both itaconate and derivates have been shown to be protective across a wide range of mouse models of inflammatory and infectious diseases, through both distinct and overlapping mechanisms. As such, continued research involving the comparison of itaconate and related molecules holds exciting prospects for the study of cysteine modification and pathways for immunomodulation and the potential for new anti-inflammatory therapeutics.
    Keywords:  immunometabolism; infection; inflammation; itaconate; post-translational modification
    DOI:  https://doi.org/10.1042/BCJ20220364
  6. Spine Surg Relat Res. 2022 Nov 27. 6(6): 721-724
      
    Keywords:  Bacillus Calmette-Guérin spondylodiscitis; case report; immunocompromised state; intravesical BCG therapy; non-muscle-invasive bladder cancer
    DOI:  https://doi.org/10.22603/ssrr.2022-0009
  7. Acta Pharm Sin B. 2022 Dec;12(12): 4486-4500
      For cancer immunotherapy, triggering toll-like receptors (TLRs) in dendritic cells (DCs) can potentiate antigen-based immune responses. Nevertheless, to generate robust and long-lived immune responses, a well-designed nanovaccine should consider different locations of TLRs on DCs and co-deliver both antigens and TLR agonist combinations to synergistically induce optimal antitumor immunity. Herein, we fabricated lipid-polymer hybrid nanoparticles (LPNPs) to spatio-temporally deliver model antigen ovalbumin (OVA) on the surface of the lipid layer, TLR4 agonist monophosphoryl lipid A (MPLA) within the lipid layer, and TLR7 agonist imiquimod (IMQ) in the polymer core to synergistically activate DCs by both extra- and intra-cellular TLRs for enhancing adaptive immune responses. LPNPs-based nanovaccines exhibited a narrow size distribution at the mean diameter of 133.23 nm and zeta potential of -2.36 mV, showed a high OVA loading (around 70.83 μg/mg) and IMQ encapsulation efficiency (88.04%). Our data revealed that LPNPs-based nanovaccines showed great biocompatibility to immune cells and an excellent ability to enhance antigen internalization, thereby promoting DCs maturation and cytokines production. Compared to Free OVA, OVA-LPNPs promoted antigen uptake, lysosome escape, depot effect and migration to secondary lymphatic organs. In vivo immunization showed that IMQ-MPLA-OVA-LPNPs with dual agonists induced more powerful cellular and humoral immune responses. Moreover, prophylactic vaccination by IMQ-MPLA-OVA-LPNPs effectively suppressed tumor growth and increased survival efficacy. Hence, the nanovaccines we fabricated can effectively co-deliver antigens and different TLR agonists and realize coordinated stimulation of DCs in a spatio-temporal manner for enhanced immune responses, which provides a promising strategy for cancer immunotherapy.
    Keywords:  Cancer immunotherapy; Imiquimod; Lipid-polymer hybrid nanoparticles; Monophosphoryl lipid A; Nanovaccine; Ovalbumin; Spatio-temporal manner; TLR agonist combinations
    DOI:  https://doi.org/10.1016/j.apsb.2022.05.032