Int Immunopharmacol. 2022 May 17. pii: S1567-5769(22)00354-X. [Epub ahead of print]108
108870
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19), and its variants have brought unprecedented impacts to the global public health system, politics, economy, and other fields. Although more than ten COVID-19 specific vaccines have been approved for emergency use, COVID-19 prevention and control still face many challenges. Bacille Calmette-Guérin (BCG) is the only authorized vaccine used to fight against tuberculosis (TB), it has been hypothesized that BCG may prevent and control COVID-19 based on BCG-induced nonspecific immune responses. Herein, we summarized: 1) The nonspecific protection effects of BCG, such as prophylactic protection effects of BCG on nonmycobacterial infections, immunotherapy effects of BCG vaccine, and enhancement effect of BCG vaccine on unrelated vaccines; 2) Recent evidence of BCG's efficacy against SARS-COV-2 infection from ecological studies, analytical analyses, clinical trials, and animal studies; 3) Three possible mechanisms of BCG vaccine and their effects on COVID-19 control including heterologous immunity, trained immunity, and anti-inflammatory effect. We hope that this review will encourage more scientists to investigate further BCG induced non-specific immune responses and explore their mechanisms, which could be a potential tool for addressing the COVID-19 pandemic and COVID-19-like "Black Swan" events to reduce the impacts of infectious disease outbreaks on public health, politics, and economy.
Keywords: Bacille Calmette-Guérin (BCG); Black Swan events; COVID-19; Immunity; SARS-CoV-2; Vaccines