Mol Cell Biochem. 2025 May 13.
Neurodegenerative diseases comprise a group of central nervous system disorders marked by progressive neuronal degeneration and dysfunction. Their pathogenesis is multifactorial, involving oxidative stress, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. Recent research has highlighted the potential of exercise as a non-pharmacological intervention for both the prevention and treatment of these disorders. In particular, exercise has received growing attention for its capacity to upregulate the expression and activity of SIRT1, a critical mediator of neuroprotection via downstream signaling pathways. SIRT1, a key member of the Sirtuin family, is a nicotinamide adenine dinucleotide (NAD +)-dependent class III histone deacetylase. It plays an essential role in regulating cellular metabolism, energy homeostasis, gene expression, and cellular longevity. In the context of neurodegenerative diseases, SIRT1 confers neuroprotection by modulating multiple signaling cascades through deacetylation, suppressing neuronal apoptosis, and promoting neural repair and regeneration. Exercise enhances SIRT1 expression and activity by increasing NAD + synthesis and utilization, improving intracellular redox balance, alleviating oxidative stress-induced inhibition of SIRT1, and thereby promoting its activation. Moreover, exercise may indirectly modulate SIRT1 function by influencing interacting molecular networks. This review summarizes recent advances in the therapeutic application of exercise for neurodegenerative diseases, with a focus on SIRT1 as a central mechanism. It examines how exercise mediates neuroprotection through the regulation of SIRT1 and its associated molecular mechanisms and signaling pathways. Finally, the paper discusses the potential applications and challenges of integrating exercise and SIRT1-targeted strategies in the management of neurodegenerative diseases, offering novel perspectives for the development of innovative treatments and improvements in patients' quality of life.
Keywords: Exercise; Neurodegenerative diseases; Neuroprotection; SIRT1