BMC Microbiol. 2025 Mar 14. 25(1): 137
BACKGROUND: Toxoplasma gondii is a single-cell parasite capable of infecting both humans and a variety of animal species. Although T. gondii infection is known to adversely affect the liver and gut microbiota, the precise interplay between the gut microbiome and the liver transcriptome in infected mice remains largely unknown. In this study, we artificially induced acute and chronic stages of T. gondii infection in BALB/c mice via the oral of low doses (n = 10) of PRU (Type II) bradyzoites. Then, we performed fecal 16S rRNA gene amplicon sequencing and RNA transcriptome sequencing to investigate the composition of the gut microbiota and the expression profiles of long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) in the livers of mice infected with T. gondii at different stages of infection.
RESULTS: Analysis revealed dynamic alterations in the gut microbiota of mice following infection with T. gondii over the course of the infection cycle. Notably, we observed a significant increase in the abundance of Enterobacteriaceae during the acute stage of infection, while the abundance of Lactobacteriaceae was elevated during the chronic stage. Liver transcriptome analysis identified numerous differentially expressed (DE) non-coding RNAs and mRNAs potentially potentially involved in mediating liver immune responses and inflammation induced by T. gondii. During the acute stage of infection, several pro-inflammatory genes, including Lpin1, Usp2, Pim3, and Il6ra were significantly up-regulated in the liver. Among these, Lpin1 may be closely associated with the development of Enterobacteriaceae overgrowth. Conversely, some anti-inflammatory genes, such as Dmbt1, and Ddit4, were exclusively up-regulated during the chronic stage of infection. Gene ontology (GO) enrichment analysis further revealed the stage-specific features of liver functionality. Specifically, during the acute stage of infection, pathways associated with inflammation were significantly enriched. Interestingly, during the chronic stage of infection, pathways related to microbiota regulation, such as 'defense response to Gram-negative bacterium', 'antimicrobial humoral immune response mediated by antimicrobial peptide', and 'antimicrobial humoral response' were enriched. Additionally, competing endogenous RNAs (CeRNAs) networks revealed that numerous DElncRNAs and DEcircRNAs competitively regulated DEmiRNA mmu-miR-690, which targets the Nr1d1 gene. These findings provide insights into the complex interplay between the liver and gut microbiota during different stages of T. gondii infection.
CONCLUSIONS: In summary, our results highlight the intricate interaction between the liver and gut microbiota in mice during T. gondii infection, with dynamic alterations observed in both the gut microbiota composition and the expression profiles of key genes in the liver over the course of the infection cycle.
Keywords:
Toxoplasma gondii
; CeRNA networks; Gut microbiota; Interaction; Liver; Non-coding RNAs; RNA sequencing