bims-toxgon Biomed News
on Toxoplasma gondii metabolism
Issue of 2024–05–12
nineteen papers selected by
Lakesh Kumar, BITS Pilani



  1. Mol Biochem Parasitol. 2024 May 06. pii: S0166-6851(24)00021-5. [Epub ahead of print] 111628
      Apicomplexan parasites are the primary causative agents of many human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. These opportunistic pathogens undergo complex life cycles with multiple developmental stages, wherein many key steps are regulated by phosphorylation mechanisms. The genomes of apicomplexan pathogens contain protein kinases from different groups including tyrosine kinase-like (TKL) family proteins. Although information on the role of TKL kinases in apicomplexans is quite limited, recent studies have revealed the important role of this family of proteins in apicomplexan biology. TKL kinases in these protozoan pathogens show unique organization with many novel domains thus making them attractive candidates for drug development. In this mini review, we summarize the current understanding of the role of TKL kinases in human apicomplexan pathogens' (Toxoplasma gondii, Plasmodium falciparum and Cryptosporidium parvum) biology and pathogenesis.
    Keywords:  Apicomplexa; Cryptosporidium parvum; Phosphorylation; Plasmodium falciparum; Protein kinase; Toxoplasma gondii
    DOI:  https://doi.org/10.1016/j.molbiopara.2024.111628
  2. PLoS Biol. 2024 May 07. 22(5): e3002634
      Toxoplasma gondii resides in its intracellular niche by employing a series of specialized secretory organelles that play roles in invasion, host cell manipulation, and parasite replication. Rab GTPases are major regulators of the parasite's secretory traffic that function as nucleotide-dependent molecular switches to control vesicle trafficking. While many of the Rab proteins have been characterized in T. gondii, precisely how these Rabs are regulated remains poorly understood. To better understand the parasite's secretory traffic, we investigated the entire family of Tre2-Bub2-Cdc16 (TBC) domain-containing proteins, which are known to be involved in vesicle fusion and secretory protein trafficking. We first determined the localization of all 18 TBC domain-containing proteins to discrete regions of the secretory pathway or other vesicles in the parasite. Second, we use an auxin-inducible degron approach to demonstrate that the protozoan-specific TgTBC9 protein, which localizes to the endoplasmic reticulum (ER), is essential for parasite survival. Knockdown of TgTBC9 results in parasite growth arrest and affects the organization of the ER and mitochondrial morphology. TgTBC9 knockdown also results in the formation of large lipid droplets (LDs) and multi-membranous structures surrounded by ER membranes, further indicating a disruption of ER functions. We show that the conserved dual-finger active site in the TBC domain of the protein is critical for its GTPase-activating protein (GAP) function and that the Plasmodium falciparum orthologue of TgTBC9 can rescue the lethal knockdown. We additionally show by immunoprecipitation and yeast 2 hybrid analyses that TgTBC9 preferentially binds Rab2, indicating that the TBC9-Rab2 pair controls ER morphology and vesicular trafficking in the parasite. Together, these studies identify the first essential TBC protein described in any protozoan and provide new insight into intracellular vesicle trafficking in T. gondii.
    DOI:  https://doi.org/10.1371/journal.pbio.3002634
  3. Nat Commun. 2024 May 06. 15(1): 3792
      Infection with the apicomplexan protozoan Toxoplasma gondii can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of T. gondii bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection. Encapsulation of bradyzoites by a cyst wall is critical for immune evasion, survival, and transmission. O-glycosylation of the protein CST1 by the mucin-type O-glycosyltransferase T. gondii (Txg) GalNAc-T3 influences cyst wall rigidity and stability. Here, we report X-ray crystal structures of TxgGalNAc-T3, revealing multiple features that are strictly conserved among its apicomplexan homologues. This includes a unique 2nd metal that is coupled to substrate binding and enzymatic activity in vitro and cyst wall O-glycosylation in T. gondii. The study illustrates the divergence of pathogenic protozoan GalNAc-Ts from their host homologues and lays the groundwork for studying apicomplexan GalNAc-Ts as therapeutic targets in disease.
    DOI:  https://doi.org/10.1038/s41467-024-48253-w
  4. PLoS Negl Trop Dis. 2024 May 07. 18(5): e0012163
       BACKGROUND: Toxoplasmosis affects a quarter of the world's population. Toxoplasma gondii (T.gondii) is an intracellular parasitic protozoa. Macrophages are necessary for proliferation and spread of T.gondii by regulating immunity and metabolism. Family with sequence similarity 96A (Fam96a; formally named Ciao2a) is an evolutionarily conserved protein that is highly expressed in macrophages, but whether it play a role in control of T. gondii infection is unknown.
    METHODOLOGY/PRINCIPAL FINDINGS: In this study, we utilized myeloid cell-specific knockout mice to test its role in anti-T. gondii immunity. The results showed that myeloid cell-specific deletion of Fam96a led to exacerbate both acute and chronic toxoplasmosis after exposure to T. gondii. This was related to a defectively reprogrammed polarization in Fam96a-deficient macrophages inhibited the induction of immune effector molecules, including iNOS, by suppressing interferon/STAT1 signaling. Fam96aregulated macrophage polarization process was in part dependent on its ability to fine-tuning intracellular iron (Fe) homeostasis in response to inflammatory stimuli. In addition, Fam96a regulated the mitochondrial oxidative phosphorylation or related events that involved in control of T. gondii.
    CONCLUSIONS/SIGNIFICANCE: All these findings suggest that Fam96a ablation in macrophages disrupts iron homeostasis and inhibits immune effector molecules, which may aggravate both acute and chronic toxoplasmosis. It highlights that Fam96a may autonomously act as a critical gatekeeper of T. gondii control in macrophages.
    DOI:  https://doi.org/10.1371/journal.pntd.0012163
  5. Int J Parasitol Drugs Drug Resist. 2024 Apr 27. pii: S2211-3207(24)00025-3. [Epub ahead of print]25 100544
      Organometallic compounds, including Ruthenium complexes, have been widely developed as anti-cancer chemotherapeutics, but have also attracted much interest as potential anti-parasitic drugs. Recently hybrid drugs composed of organometallic Ruthenium moieties that were complexed to different antimicrobial agents were synthesized. One of these compounds, a trithiolato-diRuthenium complex (RU) conjugated to sulfadoxine (SDX), inhibited proliferation of Toxoplasma gondii tachyzoites grown in human foreskin fibroblast (HFF) monolayers with an IC50 < 150 nM, while SDX and the non-modified RU complex applied either individually or as an equimolar mixture were much less potent. In addition, conjugation of SDX to RU lead to decreased HFF cytotoxicity. RU-SDX did not impair the in vitro proliferation of murine splenocytes at concentrations ranging from 0.1 to 0.5 μM but had an impact at 2 μM, and induced zebrafish embryotoxicity at 20 μM, but not at 2 or 0.2 μM. RU-SDX acted parasitostatic but not parasiticidal, and induced transient ultrastructural changes in the mitochondrial matrix of tachyzoites early during treatment. While other compounds that target the mitochondrion such as the uncouplers FCCP and CCCP and another trithiolato-Ruthenium complex conjugated to adenine affected the mitochondrial membrane potential, no such effect was detected for RU-SDX. Evaluation of the in vivo efficacy of RU-SDX in a murine T. gondii oocyst infection model comprised of non-pregnant outbred CD1 mice showed no effects on the cerebral parasite burden, but reduced parasite load in the eyes and in heart tissue.
    Keywords:  Cytotoxicity; In vivo efficacy; Organometallic drugs; Proliferation inhibition; Splenocytes; Sulfadoxine; Toxoplasma; Transmission electron microscopy; Trithiolato diruthenium complex
    DOI:  https://doi.org/10.1016/j.ijpddr.2024.100544
  6. J Muscle Res Cell Motil. 2024 May 06.
      In skeletal muscle, Na+,K+-ATPase (NKA), a heterodimeric (α/β) P-type ATPase, has an essential role in maintenance of Na+ and K+ homeostasis, excitability, and contractility. AMP-activated protein kinase (AMPK), an energy sensor, increases the membrane abundance and activity of NKA in L6 myotubes, but its potential role in regulation of NKA content in skeletal muscle, which determines maximum capacity for Na+ and K+ transport, has not been clearly delineated. We examined whether energy stress and/or AMPK affect expression of NKA subunits in rat L6 and primary human myotubes. Energy stress, induced by glucose deprivation, increased protein content of NKAα1 and NKAα2 in L6 myotubes, while decreasing the content of NKAα1 in human myotubes. Pharmacological AMPK activators (AICAR, A-769662, and diflunisal) modulated expression of NKA subunits, but their effects only partially mimicked those that occurred in response to glucose deprivation, indicating that AMPK does not mediate all effects of energy stress on NKA expression. Gene silencing of AMPKα1/α2 increased protein levels of NKAα1 in L6 myotubes and NKAα1 mRNA levels in human myotubes, while decreasing NKAα2 protein levels in L6 myotubes. Collectively, our results suggest a role for energy stress and AMPK in modulation of NKA expression in skeletal muscle. However, their modulatory effects were not conserved between L6 myotubes and primary human myotubes, which suggests that coupling between energy stress, AMPK, and regulation of NKA expression in vitro depends on skeletal muscle cell model.
    Keywords:  AMPK; Energy stress; Glucose; Myotubes; Na+,K+-ATPase; Skeletal muscle
    DOI:  https://doi.org/10.1007/s10974-024-09673-9
  7. ChemMedChem. 2024 May 10. e202400194
      Cancer is one of the primary causes of mortality worldwide. Despite nowadays are numerous therapeutic treatments to fight tumor progression, it is still challenging to completely overcome it. It is known that Histone Deacetylases (HDACs), epigenetic enzymes that remove acetyl groups from lysines on histone's tails, are overexpressed in various types of cancer, and their inhibition represents a valid therapeutic strategy. To date, some HDAC inhibitors have achieved FDA approval. Nevertheless, several other potential drug candidates have been developed. This review aims primarily to be comprehensive of the studies done so far regarding HDAC inhibitors bearing heterocyclic rings since their therapeutic potential is well known and has gained increasing interest in recent years. Hence, inserting heterocyclic moieties in the HDAC-inhibiting scaffold can be a valuable strategy to provide potent and/or selective compounds. Here, in addition to summarizing the properties of novel heterocyclic HDAC inhibiting compounds, we also provide ideas for developing new, more potent, and selective compounds for treating cancer.
    Keywords:  Epigenetics; HDAC inhibition; Heterocycles; cancer
    DOI:  https://doi.org/10.1002/cmdc.202400194
  8. mBio. 2024 May 06. e0237723
      Plasmodium falciparum, the deadly protozoan parasite responsible for malaria, has a tightly regulated gene expression profile closely linked to its intraerythrocytic development cycle. Epigenetic modifiers of the histone acetylation code have been identified as key regulators of the parasite's transcriptome but require further investigation. In this study, we map the genomic distribution of Plasmodium falciparum histone deacetylase 1 (PfHDAC1) across the erythrocytic asexual development cycle and find it has a dynamic occupancy over a wide array of developmentally relevant genes. Overexpression of PfHDAC1 results in a progressive increment in parasite load over consecutive rounds of the asexual infection cycle and is associated with enhanced gene expression of multiple families of host cell invasion factors (merozoite surface proteins, rhoptry proteins, etc.) and with increased merozoite invasion efficiency. With the use of class-specific inhibitors, we demonstrate that PfHDAC1 activity in parasites is crucial for timely intraerythrocytic development. Interestingly, overexpression of PfHDAC1 results in decreased sensitivity to frontline-drug dihydroartemisinin in parasites. Furthermore, we identify that artemisinin exposure can interfere with PfHDAC1 abundance and chromatin occupancy, resulting in enrichment over genes implicated in response/resistance to artemisinin. Finally, we identify that dihydroartemisinin exposure can interrupt the in vitro catalytic deacetylase activity and post-translational phosphorylation of PfHDAC1, aspects that are crucial for its genomic function. Collectively, our results demonstrate PfHDAC1 to be a regulator of critical functions in asexual parasite development and host invasion, which is responsive to artemisinin exposure stress and deterministic of resistance to it.
    IMPORTANCE: Malaria is a major public health problem, with the parasite Plasmodium falciparum causing most of the malaria-associated mortality. It is spread by the bite of infected mosquitoes and results in symptoms such as cyclic fever, chills, and headache. However, if left untreated, it can quickly progress to a more severe and life-threatening form. The World Health Organization currently recommends the use of artemisinin combination therapy, and it has worked as a gold standard for many years. Unfortunately, certain countries in southeast Asia and Africa, burdened with a high prevalence of malaria, have reported cases of drug-resistant infections. One of the major problems in controlling malaria is the emergence of artemisinin resistance. Population genomic studies have identified mutations in the Kelch13 gene as a molecular marker for artemisinin resistance. However, several reports thereafter indicated that Kelch13 is not the main mediator but rather hinted at transcriptional deregulation as a major determinant of drug resistance. Earlier, we identified PfGCN5 as a global regulator of stress-responsive genes, which are known to play a central role in artemisinin resistance generation. In this study, we have identified PfHDAC1, a histone deacetylase as a cell cycle regulator, playing an important role in artemisinin resistance generation. Taken together, our study identified key transcriptional regulators that play an important role in artemisinin resistance generation.
    Keywords:  PfHDAC1; Plasmodium falciparum; artemisinin resistance; histone deacetylase; malaria; transcriptomics
    DOI:  https://doi.org/10.1128/mbio.02377-23
  9. Autophagy. 2024 May 10.
      The Atg8-family proteins (MAP1LC3/LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2) play a pivotal role in macroautophagy/autophagy through their ability to help form autophagosomes. Although autophagosomes form in the cytoplasm, nuclear levels of the Atg8-family proteins are significant. Recently, the nuclear/cytoplasmic shuttling of LC3B was shown to require deacetylation of two Lys residues (K49 and K51 in LC3B), which are conserved in Atg8-family proteins. To exit the nucleus, deacetylated LC3B must bind TP53INP2/TP53INP2 (tumor protein p53 inducible nuclear protein 2) through interaction with the LC3-interacting region (LIR) of TP53INP2 (TP53INP2LIR). To examine their selectivity for TP53INP2 and the role of the conserved Lys residues in Atg8-family proteins, we prepared the six human Atg8-family proteins and acetylated variants of LC3A and GABARAP for biophysical and structural characterization of their interactions with the TP53INP2LIR. Isothermal titration calorimetry (ITC) experiments demonstrate that this LIR binds preferentially to GABARAP subfamily proteins, and that only acetylation of the second Lys residue reduces binding to GABARAP and LC3A. Crystal structures of complexes with GABARAP and LC3A (acetylated and deacetylated) define a β-sheet in the TP53INP2LIR that determines the GABARAP selectivity and establishes the importance of acetylation at the second Lys. The in vitro results were confirmed in cells using acetyl-mimetic variants of GABARAP and LC3A to examine nuclear/cytoplasmic shuttling and colocalization with TP53INP2. Together, the results demonstrate that TP53INP2 shows selectivity to the GABARAP subfamily and acetylation at the second Lys of GABARAP and LC3A disrupts key interactions with TP53INP2 required for their nuclear/cytoplasmic shuttling.
    Keywords:  GABARAP; LC3-interacting region (LIR); MAP1LC3A/LC3A; X-ray crystallography; nuclear/cytoplasmic shuttling sirtuin 1 (SIRT1)
    DOI:  https://doi.org/10.1080/15548627.2024.2353443
  10. Cells. 2024 May 03. pii: 781. [Epub ahead of print]13(9):
      mTOR is a central regulator of cell growth and metabolism in response to mitogenic and nutrient signals. Notably, mTOR is not only found in the cytoplasm but also in the nucleus. This review highlights direct involvement of nuclear mTOR in regulating transcription factors, orchestrating epigenetic modifications, and facilitating chromatin remodeling. These effects intricately modulate gene expression programs associated with growth and metabolic processes. Furthermore, the review underscores the importance of nuclear mTOR in mediating the interplay between metabolism and epigenetic modifications. By integrating its functions in nutrient signaling and gene expression related to growth and metabolism, nuclear mTOR emerges as a central hub governing cellular homeostasis, malignant transformation, and cancer progression. Better understanding of nuclear mTOR signaling has the potential to lead to novel therapies against cancer and other growth-related diseases.
    Keywords:  ARID1A; androgen receptor; cBAF; cancer; chromatin; chromatin remodeling; epigenetics; growth; histone acetylation; histone methylation; mTOR; metabolism; nucleus; rapamycin; signaling; transcription
    DOI:  https://doi.org/10.3390/cells13090781
  11. Cancer Res. 2024 May 08.
      Peripheral T cell lymphoma (PTCL) is a heterogeneous and aggressive disease with a poor prognosis. Histone deacetylase (HDAC) inhibitors have shown inhibitory effects on PTCL. A better understanding of the therapeutic mechanism underlying the effects of HDAC inhibitors could help improve treatment strategies. Here, we found that high expression of HDAC3 is associated with poor prognosis in PTCL. HDAC3 inhibition suppressed lymphoma growth in immunocompetent mice but not in immunodeficient mice. HDAC3 deletion delayed the progression of lymphoma, reduced the lymphoma burden in the thymus, spleen, and lymph nodes, and prolonged the survival of mice bearing MNU-induced lymphoma. Furthermore, inhibiting HDAC3 promoted the infiltration and enhanced the function of natural killer (NK) cells. Mechanistically, HDAC3 mediated ATF3 deacetylation, enhancing its transcriptional inhibitory activity. Targeting HDAC3 enhanced CXCL12 secretion through an ATF3-dependent pathway to stimulate NK cell recruitment and activation. Finally, HDAC3 suppression improved the response of PTCL to conventional chemotherapy. Collectively, this study provides insights into the mechanism by which HDAC3 regulates ATF3 activity and CXCL12 secretion, leading to immune infiltration and lymphoma suppression. Combining HDAC3 inhibitors with chemotherapy may be a promising strategy for treating PTCL. Key words: Histone deacetylases (HDACs), Natural killer (NK) cells, Peripheral T cell lymphoma (PTCL).
    DOI:  https://doi.org/10.1158/0008-5472.CAN-23-3250
  12. Vet Parasitol. 2024 May 03. pii: S0304-4017(24)00081-5. [Epub ahead of print]328 110193
      In prokaryotes and lower eukaryotes, 2-methylcitrate cycle (2-MCC) is the main pathway for propionate decomposition and transformation, but little is known about the 2-MCC pathway of Eimeria tenella. The analysis of genomic data found that the coding gene of 2- methylcitrate synthase (EC 2.3.3.5, PrpC) exists in E. tenella, which is a key enzyme of 2-MCC pathway. Through the search analysis of the database (ToxoDB), it was found that ETH_ 00026655 contains the complete putative sequence of EtprpC. In this study, we amplified the ORF sequence of EtprpC based on putative sequence. Then, prokaryotic expression, enzyme activity and kinetic analysis was performed. The results showed that the EtprpC ORF sequence was 1272 bp, encoding a 46.3 kDa protein comprising 424 amino acids. Enzyme activity assays demonstrate linearity between the initial reaction rate (OD/min) and EtPrpC concentration (ranging from 1.5 to 9 µg/reaction), with optimal enzyme activity observed at 41°C and pH 8.0. The results of enzymatic kinetic analysis showed that the Km of EtPrpC for propionyl-CoA, oxaloacetic acid, and acetyl-CoA was 5.239 ± 0.17 mM, 1.102 ± 0.08 μM, and 5.999 ± 1.24 μM, respectively. The Vmax was 191.11 ± 19.1 nmol/min/mg, 225.48 ± 14.4 nmol/min/mg, and 370.02 ± 25.8 nmol/min/mg when EtPrpC concentration at 4, 6, and 8 μg, respectively. Although the ability of EtPrpC to catalyze acetyl-CoA is only 0.11% of its ability to catalyze propionyl-CoA, it indicates that the 2-MCC pathway in E. tenella is similar to that in bacteria and may have a bypass function in the TCA cycle. This study can provide the theoretical foundation for the new drug targets and the development of new anticoccidial drugs.
    Keywords:  2-methylcitrate synthase; Eimeria tenella; Enzyme activity; Enzyme kinetic analysis; Gene cloning and expression
    DOI:  https://doi.org/10.1016/j.vetpar.2024.110193
  13. Med Oncol. 2024 May 06. 41(6): 138
      Breast cancer (BC) is associated with type 2 diabetes mellitus (T2DM) and obesity. Glucagon-like peptide (GLP)-1 regulates post-prandial insulin secretion, satiety, and gastric emptying. Several GLP-1 analogs have been FDA-approved for the treatment of T2DM and obesity. Moreover, GLP-1 regulates various metabolic activities across different tissues by activating metabolic signaling pathways like adenosine monophosphate (AMP) activated protein kinase (AMPK), and AKT. Rewiring metabolic pathways is a recognized hallmark of cancer, regulated by several cancer-related pathways, including AKT and AMPK. As GLP-1 regulates AKT and AMPK, we hypothesized that it alters BC cells' metabolism, thus inhibiting proliferation. The effect of the GLP-1 analogs exendin-4 (Ex4) and liraglutide on viability, AMPK signaling and metabolism of BC cell lines were assessed. Viability of BC cells was evaluated using colony formation and MTT/XTT assays. Activation of AMPK and related signaling effects were evaluated using western blot. Metabolism effects were measured for glucose, lactate and ATP. Exendin-4 and liraglutide activated AMPK in a cAMP-dependent manner. Blocking Ex4-induced activation of AMPK by inhibition of AMPK restored cell viability. Interestingly, Ex4 and liraglutide reduced the levels of glycolytic metabolites and decreased ATP production, suggesting that GLP-1 analogs impair glycolysis. Notably, inhibiting AMPK reversed the decline in ATP levels, highlighting the role of AMPK in this process. These results establish a novel signaling pathway for GLP-1 in BC cells through cAMP and AMPK modulation affecting proliferation and metabolism. This study suggests that GLP-1 analogs should be considered for diabetic patients with BC.
    Keywords:  AMPK; Breast Cancer; GLP-1 analogs; Metabolism; Viability
    DOI:  https://doi.org/10.1007/s12032-024-02390-w
  14. Brief Bioinform. 2024 Mar 27. pii: bbae219. [Epub ahead of print]25(3):
      Protein acetylation is one of the extensively studied post-translational modifications (PTMs) due to its significant roles across a myriad of biological processes. Although many computational tools for acetylation site identification have been developed, there is a lack of benchmark dataset and bespoke predictors for non-histone acetylation site prediction. To address these problems, we have contributed to both dataset creation and predictor benchmark in this study. First, we construct a non-histone acetylation site benchmark dataset, namely NHAC, which includes 11 subsets according to the sequence length ranging from 11 to 61 amino acids. There are totally 886 positive samples and 4707 negative samples for each sequence length. Secondly, we propose TransPTM, a transformer-based neural network model for non-histone acetylation site predication. During the data representation phase, per-residue contextualized embeddings are extracted using ProtT5 (an existing pre-trained protein language model). This is followed by the implementation of a graph neural network framework, which consists of three TransformerConv layers for feature extraction and a multilayer perceptron module for classification. The benchmark results reflect that TransPTM has the competitive performance for non-histone acetylation site prediction over three state-of-the-art tools. It improves our comprehension on the PTM mechanism and provides a theoretical basis for developing drug targets for diseases. Moreover, the created PTM datasets fills the gap in non-histone acetylation site datasets and is beneficial to the related communities. The related source code and data utilized by TransPTM are accessible at https://www.github.com/TransPTM/TransPTM.
    Keywords:  Non-histone acetylation; deep learning; protein language model; transformer
    DOI:  https://doi.org/10.1093/bib/bbae219
  15. Cytokine. 2024 May 03. pii: S1043-4666(24)00130-3. [Epub ahead of print]179 156627
      Leishmaniasis, a major globally re-emerging neglected tropical disease, has a restricted repertoire of chemotherapeutic options due to a narrow therapeutic index, drug resistance, or patient non-compliance due to toxicity. The disease is caused by the parasite Leishmania that resides in two different forms in two different environments: as sessile intracellular amastigotes within mammalian macrophages and as motile promastigotes in sandfly gut. As mitogen-activated protein kinases (MAPKs) play important roles in cellular differentiation and survival, we studied the expression of Leishmania donovani MAPKs (LdMAPKs). The homology studies by multiple sequence alignment show that excepting LdMAPK1 and LdMAPK2, all thirteen other LdMAPKs share homology with human ERK and p38 isoforms. Expression of LdMAPK4 and LdMAPK5 is less in avirulent promastigotes and amastigotes. Compared to miltefosine-sensitive L. donovani parasites, miltefosine-resistant parasites have higher LdMAPK1, LdMAPK3-5, LdMAPK7-11, LdMAPK13, and LdMAPK14 expression. IL-4-treatment of macrophages down-regulated LdMAPK11, in virulent amastigotes whereas up-regulated LdMAPK5, but down-regulated LdMAPK6, LdMAPK12-15, expression in avirulent amastigotes. IL-4 up-regulated LdMAPK1 expression in both virulent and avirulent amastigotes. IFN-γ-treatment down-regulated LdMAPK6, LdMAPK13, and LdMAPK15 in avirulent amastigotes but up-regulated in virulent amastigotes. This complex profile of LdMAPKs expression among virulent and avirulent parasites, drug-resistant parasites, and in amastigotes within IL-4 or IFN-γ-treated macrophages suggests that LdMAPKs are differentially controlled at the host-parasite interface regulating parasite survival and differentiation, and in the course of IL-4 or IFN-γ dominated immune response.
    Keywords:  Drug-resistance; Host-pathogen interaction; Immune response; Leishmania MAPK; Leishmaniasis; Virulence factor
    DOI:  https://doi.org/10.1016/j.cyto.2024.156627
  16. Sci Rep. 2024 05 08. 14(1): 10527
      Plasmodium falciparum, the causative agent of malaria, poses a significant global health challenge, yet much of its biology remains elusive. A third of the genes in the P. falciparum genome lack annotations regarding their function, impeding our understanding of the parasite's biology. In this study, we employ structure predictions and the DALI search algorithm to analyse proteins encoded by uncharacterized genes in the reference strain 3D7 of P. falciparum. By comparing AlphaFold predictions to experimentally determined protein structures in the Protein Data Bank, we found similarities to known domains in 353 proteins of unknown function, shedding light on their potential functions. The lowest-scoring 5% of similarities were additionally validated using the size-independent TM-align algorithm, confirming the detected similarities in 88% of the cases. Notably, in over 70 P. falciparum proteins the presence of domains resembling heptatricopeptide repeats, which are typically involvement in RNA binding and processing, was detected. This suggests this family, which is important in transcription in mitochondria and apicoplasts, is much larger in Plasmodium parasites than previously thought. The results of this domain search provide a resource to the malaria research community that is expected to inform and enable experimental studies.
    DOI:  https://doi.org/10.1038/s41598-024-60058-x
  17. Mil Med Res. 2024 May 06. 11(1): 28
       BACKGROUND: Intervertebral disc degeneration (IVDD) is a multifaceted condition characterized by heterogeneity, wherein the balance between catabolism and anabolism in the extracellular matrix of nucleus pulposus (NP) cells plays a central role. Presently, the available treatments primarily focus on relieving symptoms associated with IVDD without offering an effective cure targeting its underlying pathophysiological processes. D-mannose (referred to as mannose) has demonstrated anti-catabolic properties in various diseases. Nevertheless, its therapeutic potential in IVDD has yet to be explored.
    METHODS: The study began with optimizing the mannose concentration for restoring NP cells. Transcriptomic analyses were employed to identify the mediators influenced by mannose, with the thioredoxin-interacting protein (Txnip) gene showing the most significant differences. Subsequently, small interfering RNA (siRNA) technology was used to demonstrate that Txnip is the key gene through which mannose exerts its effects. Techniques such as colocalization analysis, molecular docking, and overexpression assays further confirmed the direct regulatory relationship between mannose and TXNIP. To elucidate the mechanism of action of mannose, metabolomics techniques were employed to pinpoint glutamine as a core metabolite affected by mannose. Next, various methods, including integrated omics data and the Gene Expression Omnibus (GEO) database, were used to validate the one-way pathway through which TXNIP regulates glutamine. Finally, the therapeutic effect of mannose on IVDD was validated, elucidating the mechanistic role of TXNIP in glutamine metabolism in both intradiscal and orally treated rats.
    RESULTS: In both in vivo and in vitro experiments, it was discovered that mannose has potent efficacy in alleviating IVDD by inhibiting catabolism. From a mechanistic standpoint, it was shown that mannose exerts its anti-catabolic effects by directly targeting the transcription factor max-like protein X-interacting protein (MondoA), resulting in the upregulation of TXNIP. This upregulation, in turn, inhibits glutamine metabolism, ultimately accomplishing its anti-catabolic effects by suppressing the mitogen-activated protein kinase (MAPK) pathway. More importantly, in vivo experiments have further demonstrated that compared with intradiscal injections, oral administration of mannose at safe concentrations can achieve effective therapeutic outcomes.
    CONCLUSIONS: In summary, through integrated multiomics analysis, including both in vivo and in vitro experiments, this study demonstrated that mannose primarily exerts its anti-catabolic effects on IVDD through the TXNIP-glutamine axis. These findings provide strong evidence supporting the potential of the use of mannose in clinical applications for alleviating IVDD. Compared to existing clinically invasive or pain-relieving therapies for IVDD, the oral administration of mannose has characteristics that are more advantageous for clinical IVDD treatment.
    Keywords:  D-mannose; Glutamine; Intervertebral disc degeneration; Thioredoxin-interacting protein (TXNIP)
    DOI:  https://doi.org/10.1186/s40779-024-00529-4
  18. Essays Biochem. 2024 May 09. pii: EBC20230086. [Epub ahead of print]
      Malate dehydrogenase (MDH) is a ubiquitous and central enzyme in cellular metabolism, found in all kingdoms of life, where it plays vital roles in the cytoplasm and various organelles. It catalyzes the reversible NAD+-dependent reduction of L-malate to oxaloacetate. This review describes the reaction mechanism for MDH and the effects of mutations in and around the active site on catalytic activity and substrate specificity, with a particular focus on the loop that encloses the active site after the substrates have bound. While MDH exhibits selectivity for its preferred substrates, mutations can alter the specificity of MDH for each cosubstrate. The kinetic characteristics and similarities of a variety of MDH isozymes are summarized, and they illustrate that the KM values are consistent with the relative concentrations of the substrates in cells. As a result of its existence in different cellular environments, MDH properties vary, making it an attractive model enzyme for studying enzyme activity and structure under different conditions.
    Keywords:  enzyme kinetics; enzyme specificity; malate dehydrogenase; reaction mechanism
    DOI:  https://doi.org/10.1042/EBC20230086
  19. iScience. 2024 May 17. 27(5): 109623
      Invasive bacterial pathogens are internalized by host cells through endocytosis, which is regulated by a cascade of actin rearrangement signals triggered by host cell receptors or bacterial proteins delivered into host cells. However, the molecular mechanisms that mediate actin rearrangement to promote bacterial invasion are not fully understood. Here, we show that the autophagy-related (ATG) protein ATG9B regulates the internalization of various bacteria by controlling actin rearrangement. ATG knockout screening and knockdown experiments in HeLa cells identified ATG9B as a critical factor for bacterial internalization. In particular, cells with ATG9B knockdown exhibited an accumulation of actin filaments and phosphorylated LIM kinase and cofilin, suggesting that ATG9B is involved in actin depolymerization. Furthermore, the kinase activity of Unc-51-like autophagy-activating kinase 1 was found to regulate ATG9B localization and actin remodeling. These findings revealed a newly discovered function of ATG proteins in bacterial infection rather than autophagy-mediated immunity.
    Keywords:  Cell biology; Microbiology
    DOI:  https://doi.org/10.1016/j.isci.2024.109623