bims-toxgon Biomed News
on Toxoplasma gondii metabolism
Issue of 2024–03–24
eight papers selected by
Lakesh Kumar, BITS Pilani



  1. Methods Mol Biol. 2024 ;2776 197-204
      Apicomplexan parasites are unicellular eukaryotes responsible for major human diseases such as malaria and toxoplasmosis, which cause massive social and economic burden. Toxoplasmosis, caused by Toxoplasma gondii, is a global chronic infectious disease affecting ~1/3 of the world population and is a major threat for any immunocompromised patient. To date, there is no efficient vaccine against these parasites and existing treatments are threatened by rapid emergence of parasite resistance. Throughout their life cycle, Apicomplexa require large amount of nutrients, especially lipids for propagation and survival. Understanding lipid acquisition is key to decipher host-parasite metabolic interactions. Parasite membrane biogenesis relies on a combination of (a) host lipid scavenging, (b) de novo lipid synthesis in the parasite, and (c) fluxes of lipids between host and parasite and within. We recently uncovered that parasite need to store the host-scavenged lipids to avoid their toxic accumulation and to mobilize them for division. How can parasites orchestrate the many lipids fluxes essential for survival? Here, we developed metabolomics approaches coupled to stable isotope labelling to track, monitor, and quantify fatty acid and lipids fluxes between the parasite, its human host cell, and its extracellular environment to unravel the complex lipid fluxes in any physiological environment the parasite could meet.
    Keywords:  Apicomplexa; Apicoplast; GC-MS; Lipid fluxes; Metabolism; Stable isotope
    DOI:  https://doi.org/10.1007/978-1-0716-3726-5_12
  2. Elife. 2024 Mar 19. pii: RP88866. [Epub ahead of print]12
      The apicoplast is a four-membrane plastid found in the apicomplexans, which harbors biosynthesis and organelle housekeeping activities in the matrix. However, the mechanism driving the flux of metabolites, in and out, remains unknown. Here, we used TurboID and genome engineering to identify apicoplast transporters in Toxoplasma gondii. Among the many novel transporters, we show that one pair of apicomplexan monocarboxylate transporters (AMTs) appears to have evolved from a putative host cell that engulfed a red alga. Protein depletion showed that AMT1 and AMT2 are critical for parasite growth. Metabolite analyses supported the notion that AMT1 and AMT2 are associated with biosynthesis of isoprenoids and fatty acids. However, stronger phenotypic defects were observed for AMT2, including in the inability to establish T. gondii parasite virulence in mice. This study clarifies, significantly, the mystery of apicoplast transporter composition and reveals the importance of the pair of AMTs in maintaining the apicoplast activity in apicomplexans.
    Keywords:  Toxoplasma gondii; apicomplexans; apicoplast; infectious disease; microbiology; monocarboxylate transporters; parasite physiology; transporters
    DOI:  https://doi.org/10.7554/eLife.88866
  3. Parasit Vectors. 2024 Mar 18. 17(1): 142
       BACKGROUND: The protozoan parasite Toxoplasma gondii encodes dozens of phosphatases, among which a plant-like phosphatase absent from mammalian genomes named PPKL, which is involved in regulating brassinosteroid signaling in Arabidopsis, was identified in the genome. Among the Apicomplexa parasites, T. gondii is an important and representative pathogen in humans and animals. PPKL was previously identified to modulate the apical integrity and morphology of the ookinetes and parasite motility and transmission in another important parasite, Plasmodium falciparum. However, the exact function of PPKL in the asexual stages of T. gondii remains unknown.
    METHODS: The plant auxin-inducible degron (AID) system was applied to dissect the phenotypes of PPKL in T. gondii. We first analyzed the phenotypes of the AID parasites at an induction time of 24 h, by staining of different organelles using their corresponding markers. These analyses were further conducted for the parasites grown in auxin for 6 and 12 h using a quantitative approach and for the type II strain ME49 of AID parasites. To further understand the phenotypes, the potential protein interactions were analyzed using a proximity biotin labeling approach. The essential role of PPKL in parasite replication was revealed.
    RESULTS: PPKL is localized in the apical region and nucleus and partially distributed in the cytoplasm of the parasite. The phenotyping of PPKL showed its essentiality for parasite replication and morphology. Further dissections demonstrate that PPKL is required for the maturation of daughter parasites in the mother cells, resulting in multiple nuclei in a single parasite. The phenotype of the daughter parasites and parasite morphology were observed in another type of T. gondii strain ME49. The substantial defect in parasite replication and morphology could be rescued by genetic complementation, thus supporting its essential function for PPKL in the formation of parasites. The protein interaction analysis showed the potential interaction of PPKL with diverse proteins, thus explaining the importance of PPKL in the parasite.
    CONCLUSIONS: PPKL plays an important role in the formation of daughter parasites, revealing its subtle involvement in the proper maturation of the daughter parasites during division. Our detailed analysis also demonstrated that depletion of PPKL resulted in elongated tubulin fibers in the parasites. The important roles in the parasites are potentially attributed to the protein interaction mediated by kelch domains on the protein. Taken together, these findings contribute to our understanding of a key phosphatase involved in parasite replication, suggesting the potential of this phosphatase as a pharmaceutic target.
    Keywords:   Toxoplasma gondii ; Cytoskeleton; PPKL; Parasite morphology; Parasite replication; Plant-like phosphatase
    DOI:  https://doi.org/10.1186/s13071-024-06135-6
  4. mBio. 2024 Mar 19. e0042724
      Apicomplexa parasites cause major diseases such as toxoplasmosis and malaria that have major health and economic burdens. These unicellular pathogens are obligate intracellular parasites that heavily depend on lipid metabolism for the survival within their hosts. Their lipid synthesis relies on an essential combination of fatty acids (FAs) obtained from both de novo synthesis and scavenging from the host. The constant flux of scavenged FA needs to be channeled toward parasite lipid storage, and these FA storages are timely mobilized during parasite division. In eukaryotes, the utilization of FA relies on their obligate metabolic activation mediated by acyl-co-enzyme A (CoA) synthases (ACSs), which catalyze the thioesterification of FA to a CoA. Besides the essential functions of FA for parasite survival, the presence and roles of ACS are yet to be determined in Apicomplexa. Here, we identified TgACS1 as a Toxoplasma gondii cytosolic ACS that is involved in FA mobilization in the parasite specifically during low host nutrient conditions, especially in extracellular stages where it adopts a different localization. Heterologous complementation of yeast ACS mutants confirmed TgACS1 as being an Acyl-CoA synthetase of the bubble gum family that is most likely involved in β-oxidation processes. We further demonstrate that TgACS1 is critical for gliding motility of extracellular parasite facing low nutrient conditions, by relocating to peroxisomal-like area.IMPORTANCEToxoplasma gondii, causing human toxoplasmosis, is an Apicomplexa parasite and model within this phylum that hosts major infectious agents, such as Plasmodium spp., responsible for malaria. The diseases caused by apicomplexans are responsible for major social and economic burdens affecting hundreds of millions of people, like toxoplasmosis chronically present in about one-third of the world's population. Lack of efficient vaccines, rapid emergence of resistance to existing treatments, and toxic side effects of current treatments all argue for the urgent need to develop new therapeutic tools to combat these diseases. Understanding the key metabolic pathways sustaining host-intracellular parasite interactions is pivotal to develop new efficient ways to kill these parasites. Current consensus supports parasite lipid synthesis and trafficking as pertinent target for novel treatments. Many processes of this essential lipid metabolism in the parasite are not fully understood. The capacity for the parasites to sense and metabolically adapt to the host physiological conditions has only recently been unraveled. Our results clearly indicate the role of acyl-co-enzyme A (CoA) synthetases for the essential metabolic activation of fatty acid (FA) used to maintain parasite propagation and survival. The significance of our research is (i) the identification of seven of these enzymes that localize at different cellular areas in T. gondii parasites; (ii) using lipidomic approaches, we show that TgACS1 mobilizes FA under low host nutrient content; (iii) yeast complementation showed that acyl-CoA synthase 1 (ACS1) is an ACS that is likely involved in peroxisomal β-oxidation; (iv) the importance of the peroxisomal targeting sequence for correct localization of TgACS1 to a peroxisomal-like compartment in extracellular parasites; and lastly, (v) that TgACS1 has a crucial role in energy production and extracellular parasite motility.
    Keywords:  Toxoplasma gondii; acylCoA synthetase; fatty acid; fatty acid metabolism; lipid; lipidomics; motility
    DOI:  https://doi.org/10.1128/mbio.00427-24
  5. Virulence. 2024 Dec;15(1): 2329566
      Toxoplasma gondii is an obligate intracellular parasite responsible for a pathology called toxoplasmosis, which primarily affects immunocompromised individuals and developing foetuses. The parasite can scavenge essential nutrients from its host to support its growth and survival. Among them, iron is one of the most important elements needed to sustain basic cellular functions as it is involved in a number of key metabolic processes, including oxygen transport, redox balance, and electron transport. We evaluated the effects of an iron chelator on the development of several parasite strains and found that they differed in their ability to tolerate iron depletion. The growth of parasites usually associated with a model of acute toxoplasmosis was strongly affected by iron depletion, whereas cystogenic strains were less sensitive as they were able to convert into persisting developmental forms that are associated with the chronic form of the disease. Ultrastructural and biochemical characterization of the impact of iron depletion on parasites also highlighted striking changes in both their metabolism and that of the host, with a marked accumulation of lipid droplets and perturbation of lipid homoeostasis. Overall, our study demonstrates that although acute iron depletion has an important effect on the growth of T. gondii, it has a more profound impact on actively dividing parasites, whereas less metabolically active parasite forms may be able to avoid some of the most detrimental consequences.
    Keywords:  Acute toxoplasmosis; bradyzoites; chronic toxoplasmosis; cystogenic strains; iron depletion
    DOI:  https://doi.org/10.1080/21505594.2024.2329566
  6. PLoS One. 2024 ;19(3): e0301214
      [This corrects the article DOI: 10.1371/journal.pone.0161231.].
    DOI:  https://doi.org/10.1371/journal.pone.0301214
  7. Methods Mol Biol. 2024 ;2776 43-62
      Chloroplasts are essential organelles that are responsible for photosynthesis in a wide range of organisms that have colonized all biotopes on Earth such as plants and unicellular algae. Interestingly, a secondary endosymbiotic event of a red algal ancestor gave rise to a group of organisms that have adopted an obligate parasitic lifestyle named Apicomplexa parasites. Apicomplexa parasites are some of the most widespread and poorly controlled pathogens in the world. These infectious agents are responsible for major human diseases such as toxoplasmosis, caused by Toxoplasma gondii, and malaria, caused by Plasmodium spp. Most of these parasites harbor this relict plastid named the apicoplast, which is essential for parasite survival. The apicoplast has lost photosynthetic capacities but is metabolically similar to plant and algal chloroplasts. The apicoplast is considered a novel and important drug target against Apicomplexa parasites. This chapter focuses on the apicoplast of apicomplexa parasites, its maintenance, and its metabolic pathways.
    Keywords:  Complex plastid; SAR; Secondary endosymbiosis; Secondary plastid
    DOI:  https://doi.org/10.1007/978-1-0716-3726-5_3
  8. Cell Rep. 2024 Mar 19. pii: S2211-1247(24)00303-6. [Epub ahead of print]43(4): 113975
      The intestine is a highly metabolic tissue, but the metabolic programs that influence intestinal crypt proliferation, differentiation, and regeneration are still emerging. Here, we investigate how mitochondrial sirtuin 4 (SIRT4) affects intestinal homeostasis. Intestinal SIRT4 loss promotes cell proliferation in the intestine following ionizing radiation (IR). SIRT4 functions as a tumor suppressor in a mouse model of intestinal cancer, and SIRT4 loss drives dysregulated glutamine and nucleotide metabolism in intestinal adenomas. Intestinal organoids lacking SIRT4 display increased proliferation after IR stress, along with increased glutamine uptake and a shift toward de novo nucleotide biosynthesis over salvage pathways. Inhibition of de novo nucleotide biosynthesis diminishes the growth advantage of SIRT4-deficient organoids after IR stress. This work establishes SIRT4 as a modulator of intestinal metabolism and homeostasis in the setting of DNA-damaging stress.
    Keywords:  CP: Cancer; SIRT4; glutamine; intestinal organoids; irradiation; nucleotide biosynthesis; nucleotide metabolism; sirtuin
    DOI:  https://doi.org/10.1016/j.celrep.2024.113975