bims-toxgon Biomed News
on Toxoplasma gondii metabolism
Issue of 2024‒03‒03
thirteen papers selected by
Lakesh Kumar, BITS Pilani



  1. mBio. 2024 Feb 26. e0028324
      Toxoplasma gondii is a widespread intracellular protozoan pathogen infecting virtually all warm-blooded animals. This parasite acquires host-derived resources to support its replication inside a membrane-bound parasitophorous vacuole within infected host cells. Previous research has discovered that Toxoplasma actively endocytoses host proteins and transports them to a lysosome-equivalent structure for digestion. However, few molecular determinants required for trafficking of host-derived material within the parasite were known. A recent study (Q.-Q. Wang, M. Sun, T. Tang, D.-H. Lai, et al., mBio 14:e01309-23, 2023, https://doi.org/10.1128/mbio.01309-23) identified a critical role for membrane anchoring of proteins via prenylation in the trafficking of endocytosed host proteins by Toxoplasma, including an essential Toxoplasma ortholog of Rab1B. The authors also found that TgRab1 is crucial for protein trafficking of the rhoptry secretory organelles, indicating a dual role in endocytic and exocytic protein trafficking. This study sets the stage for further dissecting endomembrane trafficking in Toxoplasma, along with potentially exploiting protein prenylation as a target for therapeutic development.
    Keywords:  Toxoplasma gondii; endocytosis; host-pathogen interaction; protozoan
    DOI:  https://doi.org/10.1128/mbio.00283-24
  2. Mol Biol Cell. 2024 Feb 28. mbcE23120510
      Intracellular cargo transport is a ubiquitous cellular process in all eukaryotes. In many cell types, membrane bound cargo is associated with molecular motors which transport cargo along microtubule and actin tracks. In Toxoplasma gondii (T. gondii), an obligate intracellular parasite in the phylum Apicomplexa, organization of the endomembrane pathway depends on actin and an unconventional myosin motor, myosin F (MyoF). Loss of MyoF and actin disrupts vesicle transport, organelle positioning, and division of the apicoplast, a non-photosynthetic plastid organelle. How this actomyosin system contributes to these cellular functions is still unclear. Using live-cell imaging, we observed that MyoF-EmeraldFP (MyoF-EmFP) displayed a dynamic and filamentous-like organization in the parasite cytosol, reminiscent of cytosolic actin filament dynamics. MyoF was not associated with the Golgi, apicoplast or dense granule surfaces, suggesting that it does not function using the canonical cargo transport mechanism. Instead, we found that loss of MyoF resulted in a dramatic rearrangement of the actin cytoskeleton in interphase parasites accompanied by significantly reduced actin dynamics. However, actin organization during parasite replication and motility was unaffected by the loss of MyoF. These findings revealed that MyoF is an actin organizing protein in Toxoplasma and facilitates cargo movement using an unconventional transport mechanism. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
    DOI:  https://doi.org/10.1091/mbc.E23-12-0510
  3. Nat Commun. 2024 Feb 28. 15(1): 1840
      The cytoskeletal protein actin plays a critical role in the pathogenicity of the intracellular parasite, Toxoplasma gondii, mediating invasion and egress, cargo transport, and organelle inheritance. Advances in live cell imaging have revealed extensive filamentous actin networks in the Apicomplexan parasite, but there are conflicting data regarding the biochemical and biophysical properties of Toxoplasma actin. Here, we imaged the in vitro assembly of individual Toxoplasma actin filaments in real time, showing that native, unstabilized filaments grow tens of microns in length. Unlike skeletal muscle actin, Toxoplasma filaments intrinsically undergo rapid treadmilling due to a high critical concentration, fast monomer dissociation, and rapid nucleotide exchange. Cryo-EM structures of jasplakinolide-stabilized and native (i.e. unstabilized) filaments show an architecture like skeletal actin, with differences in assembly contacts in the D-loop that explain the dynamic nature of the filament, likely a conserved feature of Apicomplexan actin. This work demonstrates that evolutionary changes at assembly interfaces can tune the dynamic properties of actin filaments without disrupting their conserved structure.
    DOI:  https://doi.org/10.1038/s41467-024-46111-3
  4. mSphere. 2024 Feb 27. e0009224
      Toxoplasma gondii is an apicomplexan parasite that is the cause of toxoplasmosis, a potentially lethal disease for immunocompromised individuals. During in vivo infection, the parasites encounter various growth environments, such as hypoxia. Therefore, the metabolic enzymes in the parasites must adapt to such changes to fulfill their nutritional requirements. Toxoplasma can de novo biosynthesize some nutrients, such as heme. The parasites heavily rely on their own heme production for intracellular survival. Notably, the antepenultimate step within this pathway is facilitated by coproporphyrinogen III oxidase (CPOX), which employs oxygen to convert coproporphyrinogen III to protoporphyrinogen IX through oxidative decarboxylation. Conversely, some bacteria can accomplish this conversion independently of oxygen through coproporphyrinogen dehydrogenase (CPDH). Genome analysis found a CPDH ortholog in Toxoplasma. The mutant Toxoplasma lacking CPOX displays significantly reduced growth, implying that T. gondii CPDH (TgCPDH) potentially functions as an alternative enzyme to perform the same reaction as CPOX under low-oxygen conditions. In this study, we demonstrated that TgCPDH exhibits CPDH activity by complementing it in a heme synthesis-deficient Salmonella mutant. Additionally, we observed an increase in TgCPDH expression in Toxoplasma when it grew under hypoxic conditions. However, deleting TgCPDH in both wild-type and heme-deficient parasites did not alter their intracellular growth under both ambient and low-oxygen conditions. This research marks the first report of a CPDH-like protein in eukaryotic cells. Although TgCPDH responds to hypoxic conditions and possesses enzymatic activity, our findings revealed that it does not directly affect acute Toxoplasma infections in vitro and in vivo.IMPORTANCEToxoplasma gondii is a ubiquitous parasite capable of infecting a wide range of warm-blooded hosts, including humans. During its life cycle, these parasites must adapt to varying environmental conditions, including situations with low-oxygen levels, such as intestine and spleen tissues. Our research, in conjunction with studies conducted by other laboratories, has revealed that Toxoplasma primarily relies on its own heme production during acute infections. Intriguingly, in addition to this classical heme biosynthetic pathway, the parasites encode a putative oxygen-independent coproporphyrinogen dehydrogenase (CPDH), suggesting its potential contribution to heme production under varying oxygen conditions, a feature typically observed in simpler organisms like bacteria. Notably, so far, CPDH has only been identified in some bacteria for heme biosynthesis. Our study discovered that Toxoplasma harbors a functional enzyme displaying CPDH activity, which alters its expression in the parasites when they face fluctuating oxygen levels in their surroundings.
    Keywords:  Toxoplasma gondii; apicomplexan; coproporphyrinogen dehydrogenase; heme metabolism; hypoxia
    DOI:  https://doi.org/10.1128/msphere.00092-24
  5. Parasitol Res. 2024 Feb 29. 123(2): 145
      Toxoplasma gondii is an opportunistic protozoan parasite that is highly prevalent in the human population and can lead to adverse health consequences in immunocompromised patients and pregnant women. Noncoding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), play important regulatory roles in the pathogenesis of many infections. However, the differentially expressed (DE) miRNAs and circRNAs implicated in the host cell response during the lytic cycle of T. gondii are unknown. In this study, we profiled the expression of miRNAs and circRNAs in human foreskin fibroblasts (HFFs) at different time points after T. gondii infection using RNA sequencing (RNA-seq). We identified a total of 7, 7, 27, 45, 70, 148, 203, and 217 DEmiRNAs and 276, 355, 782, 1863, 1738, 6336, 1229, and 1680 DEcircRNAs at 1.5, 3, 6, 9, 12, 24, 36, and 48 h post infection (hpi), respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DE transcripts were enriched in immune response, apoptosis, signal transduction, and metabolism-related pathways. These findings provide new insight into the involvement of miRNAs and circRNAs in the host response to T. gondii infection.
    Keywords:   Toxoplasma gondii ; Host–pathogen interaction; Immune response; RNA-seq; circRNA; miRNA
    DOI:  https://doi.org/10.1007/s00436-024-08152-x
  6. Parasit Vectors. 2024 Mar 01. 17(1): 96
      BACKGROUND: Toxoplasmosis is a zoonotic disease caused by the infection of the protozoa Toxoplasma gondii (T. gondii), and safe and effective therapeutic drugs are lacking. Mitochondria, is an important organelle that maintains T. gondii survival, however, drugs targeting mitochondria are lacking.METHODS: The cytotoxicity of BAM15 was detected by CCK-8 and the in vitro effects of BAM15 was detected by qPCR, plaque assay and flow cytometry. Furthermore, the ultrastructural changes of T. gondii after BAM15 treatment were observed by transmission electron microscopy, and further the mitochondrial membrane potential (ΔΨm), ATP level and reactive oxygen species (ROS) of T. gondii after BAM15 treatment were detected. The pharmacokinetic experiments and in vivo infection assays were performed in mice to determine the in vivo effect of BAM15.
    RESULTS: BAM15 had excellent anti-T. gondii activity in vitro and in vivo with an EC50 value of 1.25 μM, while the IC50 of BAM15 in Vero cells was 27.07 μM. Notably, BAM15 significantly inhibited proliferation activity of T. gondii RH strain and Prugniaud strain (PRU), caused T. gondii death. Furthermore, BAM15 treatment induced T. gondii mitochondrial vacuolation and autolysis by TEM. Moreover, the decrease in ΔΨm and ATP level, as well as the increase in ROS production further confirmed the changes CONCLUSIONS: Our study identifies a useful T. gondii mitochondrial inhibitor, which may also serve as a leading molecule to develop therapeutic mitochondrial inhibitors in toxoplasmosis.'
    Keywords:   Toxoplasma gondii ; BAM15; Invasion; Proliferation; TEM
    DOI:  https://doi.org/10.1186/s13071-024-06187-8
  7. J Biomol Struct Dyn. 2024 Feb 29. 1-16
      Toxoplasma gondii, a worldwide prevalent parasite is responsible for causing toxoplasmosis in almost all warm-blooded animals, including humans. Golgi-resident T. gondii aspartic protease 5 (TgASP5) plays an essential role in the maturation and export of the effector proteins those modulate the host immune system to establish a successful infection. Hence, inhibiting this enzyme can be a possible therapeutic strategy against toxoplasmosis. This is the first report of the detailed structural investigations of the TgASP5 mature enzyme using molecular modeling and an all-atom simulation approach which provide in-depth knowledge of the active site architecture of TgASP5. The analysis of the binding mode of the TEXEL (Toxoplasma EXport Element) substrate to TgASP5 highlighted the importance of the active site residues. Ser505, Ala776 and Tyr689 in the S2 binding pocket are responsible for the specificity towards Arg at the P2 position of TEXEL substrate. The molecular basis of inhibition by the only known inhibitor RRLStatine has been identified, and our results show that it blocks the active site by forming a hydrogen bond with a catalytic aspartate. Besides that, known aspartic protease inhibitors were screened against TgASP5 using docking, MD simulations and MM-PBSA binding energy calculations. The top-ranked inhibitors (SC6, ZY1, QBH) showed higher binding energy than RRLStatine. Understanding the structural basis of substrate recognition and the binding mode of these inhibitors will help to develop potent mechanistic inhibitors against TgASP5. This study will also provide insights into the structural features of pepsin-like aspartic proteases from other apicomplexan parasites for developing antiparasitic agents.Communicated by Ramaswamy H. Sarma.
    Keywords:  RRLStatine inhibitor; TEXEL substrate; TgASP5; Toxoplasma; apicomplexan parasite; aspartic protease; molecular dynamics
    DOI:  https://doi.org/10.1080/07391102.2024.2322625
  8. Microbiol Spectr. 2024 Feb 29. e0414223
      In an effort to identify novel compounds with potent inhibition against Toxoplasma gondii, a phenotypic screen was performed utilizing a library of 683 pure compounds derived primarily from terrestrial and marine fungi. An initial screen with a fixed concentration of 5 µM yielded 91 hits with inhibition comparable to an equal concentration of artemisinin. These compounds were then triaged based on known biological and chemical concerns and liabilities. From these, 49 prioritized compounds were tested in a dose response format with T. gondii and human foreskin fibroblasts (HFFs) for cytotoxicity. Ten compounds were identified with an IC50 less than 150 nM and a selectivity index (SI) greater than 100. An additional eight compounds demonstrated submicromolar IC50 and SI values equal to or greater than 35. While the majority of these scaffolds have been previously implicated against apicomplexan parasites, their activities in T. gondii were largely unknown. Herein, we report the T. gondii activity of these compounds with chemotypes including xanthoquinodins, peptaibols, heptelidic acid analogs, and fumagillin analogs, with multiple compounds demonstrating exceptional potency in T. gondii and limited toxicity to HFFs at the highest concentrations tested.IMPORTANCE: Current therapeutics for treating toxoplasmosis remain insufficient, demonstrating high cytotoxicity, poor bioavailability, limited efficacy, and drug resistance. Additional research is needed to develop novel compounds with high efficacy and low cytotoxicity. The success of artemisinin and other natural products in treating malaria highlights the potential of natural products as anti-protozoan therapeutics. However, the exploration of natural products in T. gondii drug discovery has been less comprehensive, leaving untapped potential. By leveraging the resources available for the malaria drug discovery campaign, we conducted a phenotypic screen utilizing a set of natural products previously screened against Plasmodium falciparum. Our study revealed 18 compounds with high potency and low cytotoxicity in T. gondii, including four novel scaffolds with no previously reported activity in T. gondii. These new scaffolds may serve as starting points for the development of toxoplasmosis therapeutics but could also serve as tool compounds for target identification studies using chemogenomic approach.
    Keywords:  Toxoplasma gondii; fumagillin; fungal natural products; heptelidic acid; peptaibol; scaffold discovery; xanthoquinodin
    DOI:  https://doi.org/10.1128/spectrum.04142-23
  9. Mol Microbiol. 2024 Feb 28.
      Plasmodium is an obligate intracellular parasite that requires intense lipid synthesis for membrane biogenesis and survival. One of the principal membrane components is oleic acid, which is needed to maintain the membrane's biophysical properties and fluidity. The malaria parasite can modify fatty acids, and stearoyl-CoA Δ9-desaturase (Scd) is an enzyme that catalyzes the synthesis of oleic acid by desaturation of stearic acid. Scd is dispensable in P. falciparum blood stages; however, its role in mosquito and liver stages remains unknown. We show that P. berghei Scd localizes to the ER in the blood and liver stages. Disruption of Scd in the rodent malaria parasite P. berghei did not affect parasite blood stage propagation, mosquito stage development, or early liver-stage development. However, when Scd KO sporozoites were inoculated intravenously or by mosquito bite into mice, they failed to initiate blood-stage infection. Immunofluorescence analysis revealed that organelle biogenesis was impaired and merozoite formation was abolished, which initiates blood-stage infections. Genetic complementation of the KO parasites restored merozoite formation to a level similar to that of WT parasites. Mice immunized with Scd KO sporozoites confer long-lasting sterile protection against infectious sporozoite challenge. Thus, the Scd KO parasite is an appealing candidate for inducing protective pre-erythrocytic immunity and hence its utility as a GAP.
    Keywords:   Plasmodium ; live attenuated parasite; liver stage; malaria; sporozoite; stearoyl-CoA Δ9-desaturase; vaccine
    DOI:  https://doi.org/10.1111/mmi.15246
  10. bioRxiv. 2024 Jan 31. pii: 2024.01.29.577773. [Epub ahead of print]
      Lipid-derived acetyl-CoA is shown to be the major carbon source for histone acetylation. However, there is no direct evidence demonstrating lipid metabolic pathway contribututions to this process. Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) catalyzes the final step of ß-oxidation, the aerobic process catabolizing fatty acids (FA) into acetyl-CoA. To investigate this in the context of immunometabolism, we generated macrophage cell line lacking ACAT1. 13 C-carbon tracing combined with mass spectrometry confirmed incorporation of FA-derived carbons into histone H3 and this incorporation was reduced in ACAT1 KO macrophage cells. RNA-seq identified a subset of genes downregulated in ACAT1 KO cells including STAT1/2 and interferon stimulated genes (ISGs). CHIP analysis demonstrated reduced acetyl-H3 binding to STAT1 promoter/enhancer regions. Increasing histone acetylation rescued STAT1/2 expression in ACAT1 KO cells. Concomitantly, ligand triggered IFNβ release was blunted in ACAT1 KO cells and rescued by reconstitution of ACAT1. Furthermore, ACAT1 promotes FA-mediated histone acetylation in an acetylcarnitine shuttle-dependent manner. In patients with obesity, levels of ACAT1 and histone acetylation are abnormally elevated. Thus, our study identified a novel link between ACAT1 mediated FA metabolism and epigenetic modification on STAT1/2 that uncovers a regulatory role of lipid metabolism in innate immune signaling and opens novel avenues for interventions in human diseases such as obesity.
    DOI:  https://doi.org/10.1101/2024.01.29.577773
  11. Elife. 2024 Feb 28. pii: RP87989. [Epub ahead of print]12
      Sirtuin 6 (SIRT6) is an NAD+-dependent histone H3 deacetylase that is prominently found associated with chromatin, attenuates transcriptionally active promoters and regulates DNA repair, metabolic homeostasis and lifespan. Unlike other sirtuins, it has low affinity to free histone tails but demonstrates strong binding to nucleosomes. It is poorly understood how SIRT6 docking on nucleosomes stimulates its histone deacetylation activity. Here, we present the structure of human SIRT6 bound to a nucleosome determined by cryogenic electron microscopy. The zinc finger domain of SIRT6 associates tightly with the acidic patch of the nucleosome through multiple arginine anchors. The Rossmann fold domain binds to the terminus of the looser DNA half of the nucleosome, detaching two turns of the DNA from the histone octamer and placing the NAD+ binding pocket close to the DNA exit site. This domain shows flexibility with respect to the fixed zinc finger and moves with, but also relative to, the unwrapped DNA terminus. We apply molecular dynamics simulations of the histone tails in the nucleosome to show that in this mode of interaction, the active site of SIRT6 is perfectly poised to catalyze deacetylation of the H3 histone tail and that the partial unwrapping of the DNA allows even lysines close to the H3 core to reach the enzyme.
    Keywords:  HDAC; SIRT6; histone deacetylation; human; molecular biophysics; sirtuins; structural biology
    DOI:  https://doi.org/10.7554/eLife.87989
  12. Mil Med Res. 2024 Feb 27. 11(1): 15
      
    Keywords:  ADP-dependent glucokinase (ADPGK); AMP-activated protein kinase (AMPK); Aldolase C; Glycolysis; Prostate cancer (PCa)
    DOI:  https://doi.org/10.1186/s40779-024-00518-7
  13. J Cell Mol Med. 2024 Mar;28(6): e18129
      ATP citrate lyase (ACLY), as a key enzyme in lipid metabolism, plays an important role in energy metabolism and lipid biosynthesis of a variety of tumours. Many studies have shown that ACLY is highly expressed in various tumours, and its pharmacological or gene inhibition significantly inhibits tumour growth and progression. However, the roles of ACLY in oesophageal squamous cell carcinoma (ESCC) remain unclear. Here, our data showed that ACLY inhibitor significantly attenuated cell proliferation, migration, invasion and lipid synthesis in different ESCC cell lines, whereas the proliferation, migration, invasion and lipid synthesis of ESCC cells were enhanced after ACLY overexpression. Furthermore, ACLY inhibitor dramatically suppressed tumour growth and lipid metabolism in ESCC cells xenografted tumour model, whereas ACLY overexpression displayed the opposite effect. Mechanistically, ACLY protein harboured acetylated modification and interacted with SIRT2 protein in ESCC cells. The SIRT2 inhibitor AGK2 significantly increased the acetylation level of ACLY protein and inhibited the proliferation and migration of ESCC cells, while overexpression of ACLY partially reversed the inhibitory effect of AGK2 on ESCC cells. Overall, these results suggest that targeting the SIRT2/ACLY signalling axis may be a potential therapeutic strategy for ESCC patients.
    Keywords:  ATP citrate lyase; BMS-303141; acetylation; lipid metabolism; oesophageal squamous cell carcinoma; sirtuin 2
    DOI:  https://doi.org/10.1111/jcmm.18129