bims-toxgon Biomed News
on Toxoplasma gondii metabolism
Issue of 2023‒07‒16
six papers selected by
Lakesh Kumar
BITS Pilani

  1. Front Immunol. 2023 ;14 1173379
      Toxoplasma gondii is the causative agent of toxoplasmosis, a zoonotic disease that poses a threat to human health and a considerable loss to livestock farming. At present, clinical therapeutic drugs mainly target T. gondii tachyzoites and fail to eradicate bradyzoites. Developing a safe and effective vaccine against toxoplasmosis is urgent and important. Breast cancer has become a major public health problem and the therapeutic method needs to be further explored. Many similarities exist between the immune responses caused by T. gondii infection and the immunotherapy for cancers. T. gondii dense granule organelles secrete immunogenic dense granule proteins (GRAs). GRA5 is localized to the parasitophorous vacuole membrane in the tachyzoite stage and the cyst wall in the bradyzoite stage. We found that T. gondii ME49 gra5 knockout strain (ME49Δgra5) was avirulent and failed to form cysts but stimulated antibodies, inflammatory cytokines, and leukocytes infiltration in mice. We next investigated the protective efficacy of ME49Δgra5 vaccination against T. gondii infection and tumor development. All the immunized mice survived the challenge infection of either wild-type RH, ME49, VEG tachyzoites, or ME49 cysts. Moreover, ME49Δgra5 tachyzoite inoculation in situ attenuated the growth of murine breast tumor (4T1) in mice and prevented 4T1's lung metastasis. ME49Δgra5 inoculation upregulated the levels of Th1 cytokines and tumor-infiltrating T cells in the tumor microenvironment and triggered anti-tumor responses by increasing the number of natural killer, B, and T cells, macrophages, and dendritic cells in the spleen. Collectively, these results suggested that ME49Δgra5 was a potent live attenuated vaccine against T. gondii infection and breast cancer.
    Keywords:  4T1 tumor; GRA5; Toxoplasma gondii; immune response; vaccine
  2. bioRxiv. 2023 Jun 27. pii: 2023.06.27.546703. [Epub ahead of print]
      Cryptosporidium parvum is an obligate intracellular parasite with a highly reduced mitochondrion that lacks the TCA cycle and the ability to generate ATP, making the parasite reliant on glycolysis. Genetic ablation experiments demonstrated that neither of the two putative glucose transporters CpGT1 and CpGT2 were essential for growth. Surprisingly, hexokinase was also dispensable for parasite growth while the downstream enzyme aldolase was required, suggesting the parasite has an alternative way of obtaining phosphorylated hexose. Complementation studies in E. coli support a role for direct transport of glucose-6-phosphate from the host cell by the parasite transporters CpGT1 and CpGT2, thus bypassing a requirement for hexokinase. Additionally, the parasite obtains phosphorylated glucose from amylopectin stores that are released by the action of the essential enzyme glycogen phosphorylase. Collectively, these findings reveal that C. parvum relies on multiple pathways to obtain phosphorylated glucose both for glycolysis and to restore carbohydrate reserves.
  3. Mol Immunol. 2023 Jul 10. pii: S0161-5890(23)00130-X. [Epub ahead of print]160 150-160
      Global warming is changing the distribution of different pathogens around the globe, and humans are more susceptible to new or re-emerging infections. The human response to microbes is complex and involves different mechanisms of the immune system. Regulation of gene expression of immunity genes and of metabolism of immune cells are essential in this process. Both mechanisms could be regulated by protein lysine acetylation that will control chromatin structure affecting gene expression or key enzyme activity involved in cellular processes. Protein acetylation is crucial for the immunity and involves two families of enzymes: lysine acetyltransferases (KATs), which will promote protein acetylation, and lysine deacetylases (KDACs) that will reduce this modification. Lysine deacetylases are divided into Zinc-dependent or HDACs and NAD+ -dependent, or Sirtuins. These enzymes are in the nucleus, cytosol, and mitochondria of mammalian cells affecting different cellular pathways, such as metabolism, gene expression, DNA repair, cell proliferation, and apoptosis, opening the opportunity to explore these proteins as drug targets in different diseases, including cancer and neurodegenerative illness. Although widely explored in chronic diseases, very little is known about the role of Sirtuins during host response against microbes' infection. In this review we aim to explore the most recent literature evidencing a role for these enzymes during host responses to viruses, bacterial and protozoan infections, pointing out how these proteins can be manipulated by these pathogens to progress in the infection. Moreover, we will uncover the potential of host KDACs as therapeutic targets to prevent infections by activating effector immune functions.
    Keywords:  Bacteria; Immune response; Infection; Protozoan; Sirtuins; Virus
  4. Antimicrob Agents Chemother. 2023 Jul 10. e0035623
      Malaria parasites in the blood stage express a single transmembrane transport protein for the release of the glycolytic end product l-lactate/H+ from the cell. This transporter is a member of the strictly microbial formate-nitrite transporter (FNT) family and a novel putative drug target. Small, drug-like FNT inhibitors potently block lactate transport and kill Plasmodium falciparum parasites in culture. The protein structure of Plasmodium falciparum FNT (PfFNT) in complex with the inhibitor has been resolved and confirms its previously predicted binding site and its mode of action as a substrate analog. Here, we investigated the mutational plasticity and essentiality of the PfFNT target on a genetic level, and established its in vivo druggability using mouse malaria models. We found that, besides a previously identified PfFNT G107S resistance mutation, selection of parasites at 3 × IC50 (50% inhibitory concentration) gave rise to two new point mutations affecting inhibitor binding: G21E and V196L. Conditional knockout and mutation of the PfFNT gene showed essentiality in the blood stage, whereas no phenotypic defects in sexual development were observed. PfFNT inhibitors mainly targeted the trophozoite stage and exhibited high potency in P. berghei- and P. falciparum-infected mice. Their in vivo activity profiles were comparable to that of artesunate, demonstrating strong potential for the further development of PfFNT inhibitors as novel antimalarials.
    Keywords:  Plasmodium; antimalarial agents; antimalarials; formate-nitrite transporter; lactate; malaria; proton; resistance
  5. Nat Commun. 2023 Jul 14. 14(1): 4216
      Malaria parasite lacks canonical pathways for amino acid biosynthesis and depends primarily on hemoglobin degradation and extracellular resources for amino acids. Interestingly, a putative gene for glutamine synthetase (GS) is retained despite glutamine being an abundant amino acid in human and mosquito hosts. Here we show Plasmodium GS has evolved as a unique type I enzyme with distinct structural and regulatory properties to adapt to the asexual niche. Methionine sulfoximine (MSO) and phosphinothricin (PPT) inhibit parasite GS activity. GS is localized to the parasite cytosol and abundantly expressed in all the life cycle stages. Parasite GS displays species-specific requirement in Plasmodium falciparum (Pf) having asparagine-rich proteome. Targeting PfGS affects asparagine levels and inhibits protein synthesis through eIF2α phosphorylation leading to parasite death. Exposure of artemisinin-resistant Pf parasites to MSO and PPT inhibits the emergence of viable parasites upon artemisinin treatment.
  6. Life Sci Alliance. 2023 Sep;pii: e202302149. [Epub ahead of print]6(9):
      The mitophagic degradation of mitochondrial matrix proteins in Saccharomyces cerevisiae was previously shown to be selective, reflecting a pre-engulfment sorting step within the mitochondrial network. This selectivity is regulated through phosphorylation of mitochondrial matrix proteins by the matrix kinases Pkp1 and Pkp2, which in turn appear to be regulated by the phosphatase Aup1/Ptc6. However, these same proteins also regulate the phosphorylation status and catalytic activity of the yeast pyruvate dehydrogenase complex, which is critical for mitochondrial metabolism. To understand the relationship between these two functions, we evaluated the role of the pyruvate dehydrogenase complex in mitophagic selectivity. Surprisingly, we identified a novel function of the complex in regulating mitophagic selectivity, which is independent of its enzymatic activity. Our data support a model in which the pyruvate dehydrogenase complex directly regulates the activity of its associated kinases and phosphatases. This regulatory interaction then determines the phosphorylation state of mitochondrial matrix proteins and their mitophagic fates.