bims-toxgon Biomed News
on Toxoplasma gondii metabolism
Issue of 2023‒01‒08
ten papers selected by
Lakesh Kumar
BITS Pilani

  1. PLoS Biol. 2023 Jan;21(1): e3001937
      Apicomplexa are obligate intracellular parasites. While most species are restricted to specific hosts and cell types, Toxoplasma gondii can invade every nucleated cell derived from warm-blooded animals. This broad host range suggests that this parasite can recognize multiple host cell ligands or structures, leading to the activation of a central protein complex, which should be conserved in all apicomplexans. During invasion, the unique secretory organelles (micronemes and rhoptries) are sequentially released and several micronemal proteins have been suggested to be required for host cell recognition and invasion. However, to date, only few micronemal proteins have been demonstrated to be essential for invasion, suggesting functional redundancy that might allow such a broad host range. Cysteine Repeat Modular Proteins (CRMPs) are a family of apicomplexan-specific proteins. In T. gondii, two CRMPs are present in the genome, CRMPA (TGGT1_261080) and CRMPB (TGGT1_292020). Here, we demonstrate that both proteins form a complex that contains the additional proteins MIC15 and the thrombospondin type 1 domain-containing protein (TSP1). Disruption of this complex results in a block of rhoptry secretion and parasites being unable to invade the host cell. In conclusion, this complex is a central invasion complex conserved in all apicomplexans.
  2. PLoS Pathog. 2023 Jan 05. 19(1): e1011003
      Toxoplasma gondii (T. gondii) is zoonotic apicomplexan parasite that is an important cause of clinical disability in humans. On a global scale, one third of the human population is infected with T. gondii. Mice and other small rodents are believed to be responsible for transmission of T. gondii to the domestic cat, its definitive host. Interferon-inducible Immunity-Related GTPases (IRG proteins) are important for control of murine T. gondii infections. Virulence differences between T. gondii strains are linked to polymorphic rhoptry proteins (ROPs) that cooperate to inactivate individual IRG family members. In particular, the pseudokinase ROP5 isoform B is critically important in laboratory strains of mice. We identified T. gondii ROP39 in complex with ROP5B and demonstrate its contribution to acute T. gondii virulence. ROP39 directly targets Irgb10 and inhibits homodimer formation of the GTPase leading to an overall reduction of IRG protein loading onto the parasitophorous vacuolar membrane (PVM). Maintenance of PVM integrity rescues the parasite from IRG protein-mediated clearance in vitro and in vivo. This study identifies a novel T. gondii effector that is important for specific inactivation of the IRG resistance system. Our data reveal that yet unknown T. gondii effectors can emerge from identification of direct interaction partners of ROP5B.
  3. J Biol Chem. 2022 Dec 31. pii: S0021-9258(22)01303-5. [Epub ahead of print] 102860
      Parasitic diseases result in considerable human morbidity and mortality. The continuous emergence and spread of new drug-resistant parasite strains is an obstacle to controlling and eliminating many parasitic diseases. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous enzymes essential for protein synthesis. The design and development of diverse small molecule, drug-like inhibitors against parasite-encoded and expressed aaRSs have validated this enzyme family as druggable. In this work, we have compiled the progress to date towards establishing the druggability of aaRSs in terms of their biochemical characterization, validation as targets, inhibitor development and structural interpretation from parasites responsible for malaria (Plasmodium), lymphatic filariasis (Brugia), giardiasis (Giardia), toxoplasmosis (Toxoplasma gondii), leishmaniasis (Leishmania), cryptosporidiosis (Cryptosporidium) and trypanosomiasis (Trypanosoma). This work thus provides a robust framework for the systematic dissection of aaRSs from these pathogens and will facilitate the cross-usage of potential inhibitors to jump-start antiparasitic drug development.
    Keywords:  Aminoacyl-tRNA synthetases; Brugia; Cryptosporidium; Drug discovery; Giardia; Leishmania; Plasmodium; Toxoplasma gondii; Trypanosoma
  4. J Wildl Dis. 2023 Jan 05.
      Toxoplasma gondii has been reported as a cause of morbidity and mortality in New Zealand's native avifauna, including the ground-dwelling Kiwi (Apteryx spp.). To better understand the extent of T. gondii infection in Little Spotted Kiwi (Apteryx owenii), a prevalence survey of kiwi living inside a 200-ha predator-proof mainland ecosanctuary (Zealandia Te Māra a Tāne, Wellington, New Zealand) was undertaken. Antibodies to T. gondii were detected by a latex agglutination test (LAT) with a cutoff positive titer of ≥1:64, and T. gondii DNA was detected by PCR. In total, 16/19 (84.2%) birds tested were positive for T. gondii by LAT (10/11), PCR (10/19), or both (4/11). Antibody titers ranged from 1:32 to ≥1:2,048. These results suggest widespread exposure of T. gondii in this population of Little Spotted Kiwi and, in conjunction with earlier reports of toxoplasmosis causing mortality in kiwi, raise important questions as to the effect this parasite may be having on this rare endemic species. Further information on the epidemiology of T. gondii infections within free-living and managed kiwi populations is urgently needed.
    Keywords:   Apteryx ; Toxoplasma gondii ; kiwi; prevalence survey; toxoplasmosis
  5. Parasitol Res. 2023 Jan 05.
      Toxoplasma gondii can infect a wide range of warm-blooded animals, causing a global toxoplasmosis zoonotic epidemic. Surface antigen 1 (SAG1) protein is expressed at the proliferative tachyzoite stage, whereas matrix antigen 1 (MAG1) is expressed at the bradyzoite and tachyzoite stages. These two proteins were found to perform protective roles in previous studies; however, their synergetic protective efficacy as a DNA vaccine against toxoplasmosis has not been clarified. In this study, we constructed recombinant pcDNA3.1( +)-TgMAG1 (pMAG1), pcDNA3.1( +)-TgSAG1 (pSAG1), and pcDNA3.1( +)-TgMAG1-TgSAG1 (pMAG1-SAG1) plasmids and administered them intramuscularly to immunize mice. The levels of anti-T. gondii IgG in serum and cytokines, such as Interleukin (IL)-4, IL-10, and Interferon (IFN)-γ, in splenocytes were measured using ELISA and the respective culture supernatants. Lethal doses of T. gondii (type I) RH strain tachyzoites were administered to immunized mice, and mortality was assessed. Conversely, mice infected with low doses of tachyzoites were monitored to determine their survival rates, and parasite burden analyses of the brains and livers were conducted. The bivalent TgMAG1 and TgSAG1 DNA vaccines exhibited excellent protective immunity against toxoplasmosis in mice, with higher serum IgG and splenocyte IFN-γ release levels, longer survival days, and reduced parasite burden in the brain and liver tissues (p < 0.05). These findings provide a new perspective for the development of T. gondii vaccines.
    Keywords:  Protective efficacy; TgMAG1; TgSAG1; Toxoplasmosis
  6. Front Cell Infect Microbiol. 2022 ;12 1029768
      Toxoplasmosis is a zoonotic disease caused by the obligate intracellular protozoan parasite T. gondii which is widely prevalent in humans and animals worldwide. The diagnosis of toxoplasmosis and distinguishing acute or chronic T. gondii infections have utmost importance for humans and animals. The TgSAG1, TgGRA7, and TgBAG1 proteins were used in the present study to develop the serological rSAG1-ELISA, rGRA7-ELISA and rBAG1-ELISA methods for the testing of T. gondii specific IgG and IgM antibodies and differentiating acute or chronic toxoplasmosis in 3733 animals, including Tibetan sheep, yaks, pigs, cows, cattle, horses, chickens, camels and donkeys from the Qinghai-Tibetan Plateau. The ELISA tests showed that the overall positivity of IgG antibody was 21.1% (786/3733), 15.3% (570/3733) and 18.2% (680/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively, and the positivity of IgM antibody was 11.8% (439/3733), 13.0% (486/3733) and 11.8% (442/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively. A total of 241 animals (6.5%) positive for all rSAG1-, rGRA7- and rBAG1-IgG were found in this study, and the 141 animals (3.8%) tested were anti-T. gondii IgM positive in all three ELISAs. Moreover, the 338, 284 and 377 animals were IgG positive in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1- ELISAs respectively, and the 346, 178 and 166 animals in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1-ELISAs were IgM positive respectively. The results confirmed that the application of SAG1, GRA7, and BAG1 recombinant antigens could successfully be used in the detection of specific IgG and IgM antibodies for distinguishing between acute or chronic T. gondii infections. It is inferred that the forms in which current animal species in the plateau area were infected with T. gondii, and the period of infection or the clinical manifestations of the current infections may be different. The present study provides substantial clinical evidence for the differential diagnosis of toxoplasmosis, and the classification of acute and chronic T. gondii infections.
    Keywords:  BAG1; GRA7; IgG; IgM; SAG1; Toxoplasma gondii; animals
  7. Heliyon. 2022 Dec;8(12): e12203
      The intracellular parasite Leishmania braziliensis is the causal agent of cutaneous and mucocutaneous leishmaniasis, a group of endemic diseases in tropical regions, including Latin America. New therapeutic targets are required to inhibit the pathogen without affecting the host. The enzyme nicotinamide/nicotinate mononucleotide adenylyltransferase (NMNAT; EC: is a potential target, since it catalyzes the final step in the biosynthesis of nicotinamide adenine dinucleotide (NAD+), which is an essential metabolite in multiple cellular processes. In this work, we produced and evaluated the catalytic activity of the recombinant protein 6HisΔ241-249LbNMNAT to study the functional relevance of the exclusive insertion present in the enzyme of L. braziliensis (LbNMNAT), but absent in the primary structure of human NMNATs. Our results indicate that the 241-249 insertion constitutes a structural element that connects the protein structure Rossmann topology with the carboxyl-terminal domain of the enzyme. The removal of this region drastically decreases the solubility, and enzymatic activity of the recombinant, causing its inactivation. Molecular dynamics simulations were carried out with the wild-type and truncated enzymes to verify additional changes in their stability, which indicated a better stability in the wild-type protein. These findings constitute an initial step to identify a new inhibition mechanism for the development of focused pharmacological strategies on exclusive insertions from the LbNMNAT protein.
    Keywords:  Deletional mutant; Leishmania; Molecular dynamics; NAD; NMNAT
  8. 3 Biotech. 2023 Jan;13(1): 29
      Sirtuins play an important role in signalling pathways associated with various metabolic regulations. They possess mono-ADP-ribosyltransferase or deacylase activity like demalonylase, deacetylase, depalmitoylase, demyristoylase and desuccinylase activity. Sirtuins are histone deacetylases which depends upon nicotinamide adenine dinucleotide (NAD) that deacetylate lysine residues. There are a total of seven human sirtuins that have been identified namely, SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6 and SIRT7. The subcellular location of mammalian sirtuins, SIRT1, SIRT6, and SIRT7 are in the nucleus; SIRT3, SIRT4, and SIRT5 are in mitochondria, and SIRT2 is in cytoplasm. Structurally sirtuins contains a N-terminal, a C-terminal and a Zn+ binding domain. The sirtuin family has been found to be crucial for maintaining lipid and glucose homeostasis, and also for regulating insulin secretion and sensitivity, DNA repair pathways, neurogenesis, inflammation, and ageing. Based on the literature, sirtuins are overexpressed and play an important role in tumorigenicity in various types of cancer such as non-small cell lung cancer, colorectal cancer, etc. In this review, we have discussed about the different types of human sirtuins along with their structural and functional features. We have also discussed about the various natural and synthetic regulators of sirtuin activities like resveratrol. Our overall study shows that the correct regulation of sirtuins can be a good target for preventing and treating various diseases for improving the human lifespan. To investigate the true therapeutic potential of sirtuin proteins and their efficacy in a variety of pathological diseases, a better knowledge of the link between the structure and function of sirtuin proteins would be necessary.
    Keywords:  Ageing; Deacetylase; Nicotinamide adenine dinucleotide; Rossmann fold; Sirtuins
  9. Am J Physiol Heart Circ Physiol. 2023 Jan 06.
      Fatty acids (FAs) rapidly and efficiently reduce cardiac glucose uptake in the Randle cycle or glucose-FA cycle. This fine-tuned physiological regulation is critical to allow optimal substrate allocation during fasted and fed states. However, the mechanisms involved in the direct FA-mediated control of glucose transport have not been totally elucidated yet. We previously reported that leucine and ketone bodies, other cardiac substrates, impair glucose uptake by increasing global protein acetylation from acetyl-CoA. As FAs generate acetyl-CoA as well, we postulated that protein acetylation is enhanced by FAs and participates to their inhibitory action on cardiac glucose uptake. Here, we demonstrated that both palmitate and oleate promoted a rapid increase in protein acetylation in primary cultured adult rat cardiomyocytes, which correlated with an inhibition of insulin-stimulated glucose uptake. This glucose absorption deficit was caused by an impairment in the translocation of vesicles containing the glucose transporter GLUT4 to the plasma membrane, although insulin signaling remained unaffected. Interestingly, pharmacological inhibition of lysine acetyltransferases (KATs) prevented this increase in protein acetylation and glucose uptake inhibition induced by FAs. Similarly, FA-mediated inhibition of insulin-stimulated glucose uptake could be prevented by KAT inhibitors in perfused hearts. To summarize, enhanced protein acetylation can be considered as an early event in the FA-induced inhibition of glucose transport in the heart, explaining part of the Randle cycle.
    Keywords:  Acetylation; Fatty acids; Glucose uptake; Insulin; Randle cycle
  10. N Am Spine Soc J. 2023 Mar;13 100191
      Cells take in, consume, and synthesize nutrients for numerous physiological functions. This includes not only energy production but also macromolecule biosynthesis, which will further influence cellular signaling, redox homeostasis, and cell fate commitment. Therefore, alteration in cellular nutrient metabolism is associated with pathological conditions. Intervertebral discs, particularly the nucleus pulposus (NP), are avascular and exhibit unique metabolic preferences. Clinical and preclinical studies have indicated a correlation between intervertebral degeneration (IDD) and systemic metabolic diseases such as diabetes, obesity, and dyslipidemia. However, a lack of understanding of the nutrient metabolism of NP cells is masking the underlying mechanism. Indeed, although previous studies indicated that glucose metabolism is essential for NP cells, the downstream metabolic pathways remain unknown, and the potential role of other nutrients, like amino acids and lipids, is understudied. In this literature review, we summarize the current understanding of nutrient metabolism in NP cells and discuss other potential metabolic pathways by referring to a human NP transcriptomic dataset deposited to the Gene Expression Omnibus, which can provide us hints for future studies of nutrient metabolism in NP cells and novel therapies for IDD.
    Keywords:  Amino acid; Degeneration; Glucose; Intervertebral disc; Lipid; Metabolism; Nucleus pulposus