bims-tofagi Biomed News
on Mitophagy
Issue of 2025–05–18
five papers selected by
Michele Frison, University of Cambridge



  1. J Cell Biol. 2025 Jul 07. pii: e202408166. [Epub ahead of print]224(7):
      BNIP3 and NIX are the main receptors for mitophagy, but their mechanisms of action remain elusive. Here, we used correlative light EM (CLEM) and electron tomography to reveal the tight attachment of isolation membranes (IMs) to mitochondrial protrusions, often connected with ER via thin tubular and/or linear structures. In BNIP3/NIX-double knockout (DKO) HeLa cells, the ULK1 complex and nascent IM formed on mitochondria, but the IM did not expand. Artificial tethering of LC3B to mitochondria induced mitophagy that was equally efficient in DKO cells and WT cells. BNIP3 and NIX accumulated at the segregated mitochondrial protrusions via binding with LC3 through their LIR motifs but did not require dimer formation. Finally, the average distance between the IM and the mitochondrial surface in receptor-mediated mitophagy was significantly smaller than that in ubiquitin-mediated mitophagy. Collectively, these results indicate that BNIP3 and NIX are required for the tight attachment and expansion of the IM along the mitochondrial surface during mitophagy.
    DOI:  https://doi.org/10.1083/jcb.202408166
  2. Cell Signal. 2025 May 13. pii: S0898-6568(25)00283-9. [Epub ahead of print] 111868
      Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disorder marked by deteriorating dyspnea and declining pulmonary function. Despite its rising prevalence and incidence, therapeutic options remain limited. PTEN-induced kinase 1 (PINK1), known for its role in PINK1/Parkin-dependent mitophagy, contributes to the pathogenesis of various lung diseases. In this study, we elucidate a previously unrecognized mechanism of PINK1, beyond its canonical mitophagy function, during pulmonary fibrosis. We established a bleomycin (BLM)-induced pulmonary fibrosis model in Pink1 knockout (Pink1-/-) mice and treated BEAS-2B cells with transforming growth factor-beta 1 (TGF-β1) to simulate the microenvironment of pulmonary fibrosis. A significant elevation in PINK1 expression was observed in vivo and in vitro systems. While PINK1/Parkin-dependent mitophagy was activated, mitophagy mediated by BCL2-interacting protein 3 (BNIP3) and FUN14 domain-containing 1 (FUNDC1) was suppressed. Further experiments in carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-treated PINK1 knockout (KO) HEK293 cells and YFP-Parkin-expressing HeLa cells demonstrated that PINK1 deficiency enhanced BNIP3- and FUNDC1-mediated mitophagy, whereas PINK1 overexpression inhibited it. Moreover, dual BNIP3/FUNDC1 knockdown significantly reversed the anti-apoptotic effect of PINK1 KO. We conclude that PINK1 deficiency promotes the clearance of damaged mitochondria via BNIP3/FUNDC1 upregulation, preserving mitochondrial homeostasis, mitigating alveolar epithelial injury, and attenuating fibrosis. Thus, PINK1 may inhibit BNIP3- and FUNDC1-mediated mitophagy besides driving PINK1-dependent mitophagy during pulmonary fibrosis.
    Keywords:  Apoptosis; Lung epithelial cell; Mitophagy; PINK1; Pulmonary fibrosis
    DOI:  https://doi.org/10.1016/j.cellsig.2025.111868
  3. mBio. 2025 May 15. e0078325
      The majority of heterotrophic unicellular eukaryotes have evolved mechanisms to survive periods of starvation, allowing them to endure until conditions are favorable for regrowth. The ciliate Tetrahymena exhibits active swimming behavior in water, preying on microorganisms and growing exponentially at a rate of 0.5-0.75 h⁻¹ under optimal conditions. In this organism, numerous mitochondria localize to the cell cortex along the ciliary rows, likely ensuring an efficient ATP supply necessary for vigorous cell movement. Although mitochondrial reduction occurs immediately under starvation, the underlying mechanism remains unknown. Here, we demonstrated that autophagy is responsible for mitochondrial reduction in Tetrahymena thermophila. Among the five T. thermophila ATG8 homologs, TtATG8A and TtATG8B formed granule- and cup-shaped structures in response to starvation. Fluorescent microscopy further showed that TtATG8A and TtATG8B associate with mitochondria. Moreover, correlative light and electron microscopy analysis revealed that mitochondria colocalized with TtATG8A or TtATG8B were engulfed by autophagosomes and displayed abnormal appearances with disrupted cristae structures. Additionally, repression of TtATG8A or TtATG8B expression significantly attenuated starvation-induced mitochondrial reduction. These findings suggest that TtATG8A- and TtATG8B-mediated autophagy is a key mechanism underlying mitochondrial reduction in starved T. thermophila.
    IMPORTANCE: This study is the first comprehensive description of the mitochondrial degradation process under nutrient starvation in the ciliate Tetrahymena. It is well known that the cell surface structure of ciliates consists of an elaborate spatial arrangement of microtubule networks and associated structures and that this surface repetitive pattern is inherited by the next generation of cells like genetic information. Our findings provide a basis for understanding how ciliates maintain an adequate amount of mitochondria on the cell surface in response to nutritional conditions. Furthermore, we have successfully demonstrated the usefulness of Tetrahymena as an experimental system for studying mitochondrial quality control and turnover. Further studies of Tetrahymena will facilitate comparative studies among diverse biological systems on how eukaryotes other than opisthokonta (yeast, cultured cells, etc.) control their mitochondria.
    Keywords:  ATG8; Tetrahymena; autophagy; mitochondria
    DOI:  https://doi.org/10.1128/mbio.00783-25
  4. Nat Commun. 2025 May 10. 16(1): 4365
      Many important vascular diseases including neointimal hyperplasia and atherosclerosis are characterized by the endothelial cell (EC) injury-initiated pathological vascular remodeling. However, the endogenous regulatory mechanisms underlying it are not fully understood. The present study investigates regulatory role of major vault protein (MVP) in the pathogenesis of vascular remodeling via controlling EC injury. By generating male murine vascular disease models, we find that ablation of endothelial MVP increases neointima formation and promotes atherosclerosis. Mechanistically, MVP directly binds with Parkin and inhibits the ubiquitination and proteasomal degradation of Parkin by dissociating the E3 ligase NEDD4L from Parkin, leading to activation of Parkin-mediated mitophagy pathway in the EC. Genetic modulation of endothelial MVP and Parkin influences the mitophagy, apoptosis, and neointima formation. These results demonstrate that MVP acts as an intracellular regulator promoting Parkin-mediated mitophagy. Our findings suggest that MVP/NEDD4L/Parkin axis may serve as the therapeutic target for treating intimal hyperplasia and atherosclerosis.
    DOI:  https://doi.org/10.1038/s41467-025-59644-y
  5. FEBS J. 2025 May 13.
      Chronic intermittent hypoxia (IH), a major feature of obstructive sleep apnea syndrome (OSA), is associated with greater severity of myocardial infarction. In this study, we performed RNA sequencing of cardiac samples from mice exposed to IH, which reveals a specific transcriptomic signature of the disease, relative to mitochondrial remodeling and cell death. Corresponding to its activation under chronic IH, we stabilized the Hypoxia Inducible Factor-1α (HIF-1α) in cardiac cells in vitro and observed its association with an increased autophagic flux. In accordance, IH induced autophagy and mitophagy, which are decreased in HIF-1α+/- mice compared to wild-type animals, suggesting that HIF-1 plays a significant role in IH-induced mitochondrial remodeling. Next, we showed that the AMPK metabolic sensor, typically activated by mitochondrial stress, is inhibited after 3 weeks of IH in hearts. Therefore, we assessed the effect of metformin, an anti-diabetic drug and potent activator of AMPK, on myocardial response to ischemia-reperfusion (I/R) injury. Daily administration of metformin significantly decreases infarct size without any systemic beneficial effect on insulin resistance under IH conditions. The cardioprotective effect of metformin was lost in AMPKα2 knock-out mice, demonstrating that AMPKα2 isoform promotes metformin-induced cardioprotection in mice exposed to IH. Mechanistically, we found that metformin inhibits IH-induced mitophagy in myocardium and decreases HIF-1α nuclear expression in mice subjected to IH. In vitro experiments demonstrated that metformin induced HIF-1α phosphorylation, decreased its nuclear localization, and HIF-1 transcriptional activity. Collectively, these results identify the AMPKα2 metabolic sensor as a novel modulator of HIF-1 activity. Our data suggest that metformin could be considered as a cardioprotective drug in OSA patients independently of their metabolic status.
    Keywords:  AMPK; HIF‐1; intermittent hypoxia; ischemia–reperfusion; myocardium
    DOI:  https://doi.org/10.1111/febs.70110