Free Radic Biol Med. 2024 Sep 24. pii: S0891-5849(24)00686-5. [Epub ahead of print]
Feng-Juan Li,
Huantao Hu,
Liangyan Wu,
Bijun Luo,
Yuan Zhou,
Jun Ren,
Jie Lin,
Russel J Reiter,
Shuyi Wang,
Maolong Dong,
Jun Guo,
Hu Peng.
Sepsis evokes compromised myocardial function prompting heart failure albeit target therapy remains dismal. Our study examined the possible role of mitophagy receptor FUNDC1 in septic cardiomyopathy. A sepsis model was established using cecal ligation and puncture (CLP) in FUNDC1 knockout (FUNDC1-/-) and WT mice prior to the evaluation of cardiac morphology, echocardiographic and cardiomyocyte contractile, oxidative stress, apoptosis, necroptosis, and ferroptosis. RNAseq analysis depicted discrepant patterns in mitophagy, oxidative stress and ferroptosis between CLP-challenged and control murine hearts. Septic patients displayed cardiac injury alongside low plasma FUNDC1 and iron levels. CLP evoked interstitial fibrosis, cardiac dysfunction (lowered ejection fraction, fractional shortening, shortening/relengthening velocity, peak shortening and electrically-stimulated intracellular Ca2+ rise, alongside increased LV end systolic diameter and relengthening duration), O2- buildup, apoptosis, necroptosis, and ferroptosis (downregulated GPX4 and SLC7A11), the responses of which were accentuated by FUNDC1 ablation. In particular, levels of lipid peroxidation enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) were upregulated following CLP procedure, with a more pronounced response in FUNDC1-/- mice. Co-immunoprecipitation and interaction interface revealed an evident interaction between FUNDC1 and ACSL4. In vitro studies revealed that the endotoxin lipopolysaccharide provoked cardiomyocyte contractile and lipid peroxidation anomalies, the responses were reversed by the mitophagy inducer oleanolic acid, inhibition of ACSL4 and ferroptosis. These findings favor a role for FUNDC1-ACSL4-ferroptosis cascade in septic cardiomyopathy.
Keywords: ACSL4; Cecal ligation and puncture; FUNDC1; Ferroptosis; Heart