bims-tofagi Biomed News
on Mitophagy
Issue of 2024–07–28
four papers selected by
Michele Frison, University of Cambridge



  1. J Biol Chem. 2024 Jul 24. pii: S0021-9258(24)02106-9. [Epub ahead of print] 107605
      TNIP1 has been increasingly recognized as a security check to finely adjust the rate of mitophagy by disrupting the recycling of the Unc-51-like kinase (ULK) complex during autophagosome formation. Through tank-binding kinase 1 (TBK1)-mediated phosphorylation of the TNIP1 FIR motif, the binding affinity of TNIP1 for FIP200, a component of the ULK complex, is enhanced, allowing TNIP1 to outcompete autophagy receptors. Consequently, FIP200 is released from the autophagosome, facilitating further autophagosome expansion. However, the molecular basis by which FIP200 utilizes its claw domain to distinguish the phosphorylation status of residues in the TNIP1 FIP200 interacting region (FIR) motif for recognition is not well understood. Here, we elucidated multiple crystal structures of the complex formed by the FIP200 claw domain and various phosphorylated TNIP1 FIR peptides. Structural and isothermal titration calorimetry (ITC) analyses identified the crucial residues in the FIP200 claw domain responsible for the specific recognition of phosphorylated TNIP1 FIR peptides. Additionally, utilizing structural comparison and molecular dynamics (MD) simulation data, we demonstrated that the C-terminal tail of TNIP1 peptide affected its binding to the FIP200 claw domain. Moreover, the phosphorylation of TNIP1 Ser123 enabled the peptide to effectively compete with the peptide p-CCPG1 (the FIR motif of the autophagy receptor CCPG1) for binding with the FIP200 claw domain. Overall, our work provides a comprehensive understanding of the specific recognition of phosphorylated TNIP1 by the FIP200 claw domain, marking an initial step toward fully understanding the molecular mechanism underlying the TNIP1-dependent inhibition of mitophagy.
    Keywords:  TNFAIP3-interacting protein 1 (TNIP1); crystal structure; focal adhesion kinase (FAK)-interacting protein of 200 kDa (FIP200); mitophagy; phosphorylation
    DOI:  https://doi.org/10.1016/j.jbc.2024.107605
  2. J Neurosci. 2024 Jul 25. pii: e0879242024. [Epub ahead of print]
      Mitochondrial population maintenance in neurons is essential for neuron function and survival. Contact sites between mitochondria and the endoplasmic reticulum (ER) are poised to regulate mitochondrial homeostasis in neurons. These contact sites can function to facilitate transfer of calcium and lipids between the organelles and have been shown to regulate aspects of mitochondrial fission and fusion dynamics. VapB is an ER membrane protein present at a subset of ER-mitochondria contact sites. Mutations in VapB cause neurodegenerative disease. Specifically, a proline-to-serine mutation at amino acid 56 (P56S), correlates with susceptibility to amyotrophic lateral sclerosis (ALS) type 8. Given the relationship between failed mitochondrial health and neurodegenerative disease, we investigated the function of VapB in mitochondrial population maintenance. We demonstrate that transgenic expression of VapBP56S in zebrafish larvae (sex undetermined) increased mitochondrial biogenesis, causing increased mitochondrial population size in the axon terminal. Expression of wild type VapB did not alter biogenesis but, instead, increased mitophagy in the axon terminal. Using genetic manipulations to independently increase mitochondrial biogenesis in zebrafish neurons, we show that biogenesis is normally balanced by mitophagy to maintain a constant mitochondrial population size. VapBP56S transgenics fail to increase mitophagy to compensate for the increase in mitochondrial biogenesis, suggesting an impaired mitophagic response. Finally, using a synthetic ER-mitochondria tether, we show that VapB's function in mitochondrial turnover is likely independent of ER-mitochondrial tethering by contact sites. Our findings demonstrate that VapB can control mitochondrial turnover in the axon terminal, and this function is altered by the P56S ALS-linked mutation.Significance statement Mitochondrial population dysfunction is tightly tied to neurodegenerative diseases, including ALS. Maintenance of the mitochondrial population in neurons requires the birth of new mitochondria and the degradation of damaged organelles. ER-mitochondrial contact site proteins are in a position to regulate both processes in neurons. Our work demonstrates that an ALS-associated mutation in the contact site protein VapB disrupts both processes, identifying VapB as a mediator of regulated mitochondrial turnover to maintain a steady-state mitochondrial population.
    DOI:  https://doi.org/10.1523/JNEUROSCI.0879-24.2024
  3. Brain. 2024 Jul 25. pii: awae241. [Epub ahead of print]
      Mitochondrial malfunction associated with impaired mitochondrial quality control and self-renewal machinery, known as mitophagy, is an under-appreciated mechanism precipitating synaptic loss and cognitive impairments in Alzheimer's disease (AD). Promoting mitophagy has been shown to improve cognitive function in AD animals. However, the regulatory mechanism was unclear, which formed the aim of this study. Here, we found that a neuron-specific loss of Bcl-2 family member BOK in AD patients and APPswe/PS1dE9 (APP/PS1) mice is closely associated with mitochondrial damage and mitophagy defects. We further revealed that BOK is the key to the Parkin-mediated mitophagy through competitive binding to the MCL1/Parkin complex, resulting in Parkin release and translocation to damaged mitochondria to initiate mitophagy. Furthermore, overexpressing bok in hippocampal neurons of APP/PS1 mice alleviated mitophagy and mitochondrial malfunction, resulting in improved cognitive function. Conversely, the knockdown of bok worsened the aforementioned AD-related changes. Our findings uncover a novel mechanism of BOK signaling through regulating Parkin-mediated mitophagy to mitigate amyloid pathology, mitochondrial and synaptic malfunctions, and cognitive decline in AD, thus representing a promising therapeutic target.
    Keywords:  amyloid-β; cognitive decline; mitochondrial dysfunction; mitophagy; synaptophysin loss
    DOI:  https://doi.org/10.1093/brain/awae241
  4. Autophagy. 2024 Jul 25.
      Spautin-1 is a well-known macroautophagy/autophagy inhibitor via suppressing the deubiquitinases USP10 and USP13 and promoting the degradation of the PIK3C3/VPS34-BECN1 complex, while its effect on selective autophagy remains poorly understood. Mitophagy is a selective form of autophagy for removal of damaged and superfluous mitochondria via the autophagy-lysosome pathway. Here, we report a surprising discovery that, while spautin-1 remains as an effective autophagy inhibitor, it promotes PINK1-PRKN-dependent mitophagy induced by mitochondrial damage agents. Mechanistically, spautin-1 facilitates the stabilization and activation of the full-length PINK1 at the outer mitochondrial membrane (OMM) via binding to components of the TOMM complex (TOMM70 and TOMM20), leading to the disruption of the mitochondrial import of PINK1 and prevention of PARL-mediated PINK1 cleavage. Moreover, spautin-1 induces neuronal mitophagy in Caenorhabditis elegans (C. elegans) in a PINK-1-PDR-1-dependent manner. Functionally, spautin-1 is capable of improving associative learning capability in an Alzheimer disease (AD) C. elegans model. In summary, we report a novel function of spautin-1 in promoting mitophagy via the PINK1-PRKN pathway. As deficiency of mitophagy is closely implicated in the pathogenesis of neurodegenerative disorders, the pro-mitophagy function of spautin-1 might suggest its therapeutic potential in neurodegenerative disorders such as AD.
    Keywords:  Alzheimer’s disease; PINK1; TOMM complex; autophagy; mitophagy; spautin-1
    DOI:  https://doi.org/10.1080/15548627.2024.2383145